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Computational Semantics

Ascribing meaning to linguistic units

Units: words, phrases, sentences, discourse

‘Meaning’:

word senses (match)
categories (bread is-a food)
semantic relationships (wheel part-of bus ), (give birth
before→ die) (murder cause→ death),
logical form/thematic role (I give the dog a bone)
give(x,y,z) I(x) dog(y) bone(z) /

agent=I, recipient = dog, theme = bone

idiomatic usage (he gave them a run for their money)

How do (should) we measure success?



Evaluation Goals and Considerations

Why this task?

Is the task assumed useful for an application?
Does the task model human language?

The objective:

To decide if the task itself is viable
To measure success
To compare systems

What measurements should we use?
accuracy, precision, recall, coverage, correlation . . .

What is the best we can expect?

What is the worst we should expect?

On what data?

Availability (licenses)
Bias
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Word Sense Disambiguation (wsd )

Given a word in context, find the best-fitting “sense”

Residents say militants in a station
wagon pulled up, doused the building
in gasoline, and struck a match.

After the match, replace any
remaining fluid deficit to prevent
problems of chronic dehydration
throughout the tournament.



Word Sense Disambiguation (wsd )

Given a word in context, find the best-fitting “sense”

Residents say militants in a station
wagon pulled up, doused the building
in gasoline, and struck a match.

match#n#1

After the match, replace any
remaining fluid deficit to prevent
problems of chronic dehydration
throughout the tournament.

match#n#2



Senseval 1998

International evaluation ‘exercise’ (not competition)
followed from discussions at
Tagging Text with Lexical Semantics (Light, 1997)

“nearly as many [WSD] test suits as there are researchers”
(Resnik and Yarowsky, 1997)

Need for standardized approach ‘gold standard’ to level the
playing field

data and sense inventories
measure how ‘gold’ is gold using agreement between humans
metrics: precision and recall

inevitable biases, but aim to make comparisons possible



Senseval(s)
1998,2001,2004

Methodology focusing on conditions (including deadlines)

Multiple languages

Inclusivity (avoided labelling as a ‘competition’)

Sampling choices: All words vs lexical sample tasks

Sense inventories:

Hector (unseen)
WordNet (widely available)
Distinctions from parallel data (Japanese Translation Task
2001)

Hand-labelled blind and Inter-tagger(annotator) agreement to
estimate upper-bound

Random and most frequent baselines



Word Sense Disambiguation: The Reality

wsd seems appealing, but what about

line – mark long rather than wide vs adjacent/queue vs text

bar – piece of metal or wood vs counter(in pub) vs pub

child - offspring vs young person vs . . .

You fall in love or give birth to a child, and suddenly you
remember the miracle of existence. (UKWaC)



Coarse-grained Senses

Many believe we need a coarse-grained level for wsd
applications (Ide and Wilks, 2006) (though see Stokoe (2005))

But what is the right way to group senses?

Example child WordNet
WNs# gloss

1 a young person

2 a human offspring

3 an immature childish person

4 a member of a clan or tribe

For machine translation (mt) use parallel corpora if you know
the target languages

But what about other applications such as summarising,
paraphrasing, question answering (qa ), information retrieval?



Coarse-grained Senses

Many believe we need a coarse-grained level for wsd
applications (Ide and Wilks, 2006) (though see Stokoe (2005))

But what is the right way to group senses?

Example child WordNet senseval-2 groups
WNs# gloss

1 a young person

2 a human offspring

3 an immature childish person

4 a member of a clan or tribe

For machine translation (mt) use parallel corpora if you know
the target languages

But what about other applications such as summarising,
paraphrasing, question answering (qa ), information retrieval?



Senseval Findings

Supervised systems outperform “unsupervised” but costly

They need a large quantity of hand-labelled data

Performance just better than first sense heuristic
e.g. English all words Senseval-3 results



Senseval-3 Panel discussion

plateau in performance, (reflecting skew of the data and bias)

not learning “what works well on what”

desire to demonstrate utility of wsd (issue for parsing too!)

desire to encourage new ideas/tasks (diversity)

NB also desire for inter-operability (2007 discussion)
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The Evolution of SemEval
A sample of tasks
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1997 1998 2001 2004

Co−referemce

2010 2012 2013 ...annually..

WSD

Semantic Relations

Semantic/Frame Role Labelling

Semantic Parsing

 2018

Semeval

Lexical Substitution

Affect/Sentiment

Textual Entailment

STS Phrasal Similarity

WSI

humour/ rumour

TempEval

QA
Comprehension

2007

Snippet Clustering

Senseval



A SemEval Task Categorization

linguistic markup

semantic roles

logic form

word senses (WSD and WSI)

(SRL)

word and phrase similarity (1−5)

textual entailment (Y/No/Neutral)

TempEval

sentiment

keyphrase extraction

intuitive judgements

information extraction

question answering

semantic tasks

information retrievallexical substitution/simplification (paraphrases)

applications
(representation dependent) (representation independent)
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Word Sense Representation and WSI
(Schütze, 1998; Apidianaki et al., 2014; Lau et al., 2012; Brody and Lapata, 2009)

smoker     0.01

....

Topic 3

player

football   0.03

game 0.02

 0.02
pitch   0.01

...

Topic 4

day 0.04

week 0.03

night 0.02

hour 0.01

...

pair

....

Topic 1

tie 0.04 
association  0.02

correspond         0.01

    0.01

lighter 0.04

fire 0.05

Topic 2

cigarette 0.02

watch

20
tournament

30

game
team

lighter
cigarette

match

match

hold

 ...

...

Topic Models

Paraphrases (Translations)WordNet

 which saw both players.....tie in the tennis match

Vector Space Models (Word Embeddings)

match,
contest, 
competition
game, tournament

match,

counterpart
equivalent

object

match,
wood tipped

with combustible

event
cognition

knowledge

match,

people compete
something

resembles
something that

match,

match,

lighter

light

a contest in which



Word Sense Induction: How to Evaluate?

SemEval 2007, 2010 and 2013

Compare clusters to those induced from traditional tagging

sentence gold system
S1 WN2 SYS1
S2 WN1 SYS1
S3 WN1 SYS1
S4 WN2 SYS2

wsd task using best possible mapping

Clustering metrics which compare gold with system clustering

2013 included a graded task which allows soft clusters and
weights

However just as for wsd , what is the right inventory?

None of these tasks were truly representation independent as
the gold-standard is based on WordNet distinctions



Word Sense Induction: How to evaluate?
wsi and wsd within an End-User Application (Navigli and Vannella, 2013)

Clustering web snippets, for example apple:
1 Apple Inc., formerly Apple Computer, Inc., is...
2 The science of apple growing is called pomology...
3 Apple designs and creates iPod and iTunes...(Annotations

Wikipedia senses)

Wikipedia disambiguation page as inventory (botany,
companies, film and television, music etc...)

Topic modelling trained using wikipedia best
performance (Lau et al., 2013)!



Lexical Substitution (McCarthy and Navigli, 2007)

Find a replacement word for a target word in context

For example
The ideal preparation would be a light meal about 2-2 1/2 hours

pre-match , followed by a warm-up hit and perhaps a top-up with
extra fluid before the match.



Lexical Substitution (McCarthy and Navigli, 2007)

Find a replacement word for a target word in context

For example
The ideal preparation would be a light meal about 2-2 1/2 hours

pre-match , followed by a warm-up hit and perhaps a top-up with
extra fluid before the game.



Substitutes for investigator (noun)



Cross-Lingual Lexical Substitution (Mihalcea et al., 2010)

Example solid.a

1082: We are confident, that by signing the treaty, the friendly
relationship between the two countries has become solid.

1083: Glacius - Pour some water into your hand and cause it to freeze
solid

1087: Huge areas that had been solid enough for camping a day earlier
were now saturated with water.

S lexsub substitutes clls translations
1082 dependable 1;strong 1;firm 1;cemented

1;genuine 1;stable 1;reliable 1;
fuerte 4;solido 4;resistente 1;

1083 hard 3;rigid 1;set 1; solido 4;tempano 1;congelado 1;en estado
solido 1;

1087 firm 2;hard 2;strong 1;dry 1;set 1;sound 1; fuerte 2;resistente 1;macizo 1;consistente
1;solido 1;seguro 1;duro 1;firme 1;
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Logical Form, Frames and Semantic Roles

Example: Popeye said, ‘I usually eat spinach’

Senseval-3 Logical Forms (Rus, 2004)
Popeye:n(x1) say:v(e1,x1,e2) eat:v(e2,x1,x2) spinach:n(x2)

usually:r(e2)

SemEval 2007 FrameNet task (Baker et al., 2007).
Annotate using semantic frames and frame elements from
FrameNet (Ruppenhofer et al., 2010)

Lexical Unit Frame Frame Element (Roles) - Filler
say Statement Speaker - Popeye, Message - I usually eat spinach

eat Ingestion Ingestor - I, Ingestibles - Spinach



Abstract Meaning Representation Parsing and
Generation (May and Priyadarshi, 2017; May, 2016)

The London emergency services said that altogether 11 people had
been sent to hospital for treatment due to minor wounds.

other related tasks e.g. 2019 Cross-Lingual Semantic Parsing with
UCCA (Universal Conceptual Cognitive Annotation)



Phrasal Similarity (Korkontzelos et al., 2013)

Two subtasks:
1 Semantic Similarity of word and 2-word phrase (Y/N)

demeanor – non verbal behaviour
aubergine – psychotic disorder

2 detecting non-composition

Never go back to a lit firework - it may go off in your face.

The musical backing is not in your face like some of today’s recordings

. . .



Semantic Textual Similarity (Agirre et al., 2012, 2016a)

Judgements on Scale (1-5) between two text fragments
(sentences)

Relevant to applications e.g. Question Answering,
Summarisation, Machine Translation

Data from a variety of domains including:

plagiarism corpus
Q/A Question-question and answer/answer similarity
image descriptions

Monolingual (2012) and then Cross-Lingual (2016)



Semantic Textual Similarity (Agirre et al., 2016a)

Guidelines:

5 Two sentences are completely equivalent

4 Most equivalent (unimportant difference in detail)

3 Roughly equivalent but important info missing or differs

2 Two sentences are not equivalent but share some details

1 Two sentences are not equivalent, but are on the same topic

0 Two sentences are completely dissimilar.

1 They flew out of the nest in groups.

2 They flew into the nest together



Semantic Textual Similarity (Agirre et al., 2016a)

Guidelines:

5 Two sentences are completely equivalent

4 Most equivalent (unimportant difference in detail)

3 Roughly equivalent but important info missing or differs

2 Two sentences are not equivalent but share some details

1 Two sentences are not equivalent, but are on the same topic

0 Two sentences are completely dissimilar.

1 They flew out of the nest in groups.

2 They flew into the nest together



Interpretable Semantic Textual Similarity (Agirre et al.,
2015, 2016b)

On what grounds is something similar?

Alignments

Relation (similar, more specific/general, equivalent)

Similarity score

1 12 killed in bus accident in Pakistan

2 10 killed in road accident in NW Pakistan

[12] <=> [10] : (SIMILAR 4)

[killed] <=> [killed] : (EQUIVALENT 5)

[in bus accident] <=> [in road accident] : (MORE-SPECIFIC 4)

[in Pakistan] <=> [in NW Pakistan] : (MORE-GENERAL 4)



Interpretable Semantic Textual Similarity (Agirre et al.,
2015, 2016b)

On what grounds is something similar?

Alignments

Relation (similar, more specific/general, equivalent)

Similarity score

1 12 killed in bus accident in Pakistan

2 10 killed in road accident in NW Pakistan

[12] <=> [10] : (SIMILAR 4)

[killed] <=> [killed] : (EQUIVALENT 5)

[in bus accident] <=> [in road accident] : (MORE-SPECIFIC 4)

[in Pakistan] <=> [in NW Pakistan] : (MORE-GENERAL 4)



Textual Entailment

Tasks run alongside and intersecting with SemEval

Important for natural language inference (summarization,
question-answering, Machine Translation evaluation . . . )

Unidirectional decision from premise sentence to hypothesis

Data construction: given premise sentence people asked to
produce three hypotheses (Entailment, Contradiction, Neutral)

For example, premise:
A man reads the paper in a bar with green lighting.

1 The man is inside. E

2 The man is reading the sportspage. N

3 The man is climbing a mountain. C



SICK: Sentences Involving Compositional Knowledge
(Marelli et al., 2014)

Two tasks, operating on sentence pairs:

Semantic Relatedness 1-5
Entailment (Entailment, Contradiction and Neutral)

Focus on composition, rather than multiwords, named entities
and encyclopedic information:
forked out – buy, EU – European Union, Paris vs France

Focus on issues e.g. negation active/passive which are not
frequent in sts and textual entailment datasets

Finding: systems exploit ad-hoc features e.g. negation and
antonyms to detect contradiction
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Evaluating Computationals Semantics: Representation

Semantics is covert, so how should we annotate for
evaluation?

standard representations e.g. WordNet senses, FrameNet
Frames and Roles, AMR mark up?
representation independent e.g. similarity, Y/N, paraphrases

allow comparison of different approaches with less bias,
minimal guidelines for annotators ,
but need careful analysis of data to see where the faults lie /

and note . . .

Diana McCarthy, Senseval-SemEval Turing Seminar 2018



Representation may be help downstream applications

WordNet provides Semantic Relationships



Representation may help downstream applications

FrameNet may help with inferences



Pros and Cons

Representation dependence:

bias to that theory/inventory /
costly to produce annotations /
annotations may allow hooks to other semantic resources ,

Representation independence

fairer comparison of very different approaches ,
intuitive and easier to elicit (crowd source (Biemann, 2013)) ,
interpretation may require careful scrutiny /

Human agreement depends on task

Possibilities for different types of annotation on the same data
(without over-engineering for a dataset)



And Finally...

Senseval and SemEval offer a wide variety of datasets
available for many tasks and in many languages

Useful for replicability (NB tasks are easier without deadlines)

Evaluation to compare and learn (not just about headline
scores)

Watch for bias in datasets! Variety helps

Thank you for listening!
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