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Lexical Acquisition at the Syntax-Semantics
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Summary

Verbs frequently permit their arguments to be expressed syntactically in more than one way. Such
verbs are said to exhibit diathesis alternations. These alternations lie at the bridge between syntax
and lexical semantics, since the semantics of a verb licenses its syntactic behaviour. This link
between syntax and semantics is extremely useful for NLP purposes because it allows us to classify
a verb semantically from its syntactic behaviour, and to predict further syntactic behaviour from
the classification.

In this thesis, we propose a method for discovering verbs which participate in diathesis alterna-
tions where underlying arguments occur in different grammatical slots in the alternating variants.
Rather than try to identify verbal participants by their semantic properties, our method exploits ver-
bal argument structure and preferences which can be acquired automatically from corpora. We use
acquired subcategorization frames to detect potential candidates for a given alternation. We then
obtain selectional preference models for the grammatical slots, in the alternating frames, between
which the arguments switch. We demonstrate a significant relationship between the similarity of
the preference models, at the relevant grammatical slots, and verbal participation.

Although identification of diathesis alternation participants is the central goal of the thesis,
we have two subgoals: the automatic acquisition of both subcategorization frames and selectional
preference models. Since there is already a large body of research in these areas, we draw on the
research of others. For subcategorization frame acquisition we use the original system of Briscoe
& Carroll (1997). For the selectional preference models, we modify the approach devised by Li &
Abe (Li & Abe, 1995; Abe & Li, 1996).

One of the main modifications we make for selectional preference acquisition, is to attempt
word sense disambiguation of the argument heads used to create the preference models. We ex-
periment with some methods which do not make excessive demands for training time or data.

Submitted for the degree of D.Phil.
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Chapter 1

Introduction

This thesis concerns the automatic acquisition of verbal argument structure and selectional pref-
erences. Verbs play a pivotal role in natural language as they are the key predicates in sentences,
with all other constituents expressed in terms of their argument structure. There is a great deal of
information that one might want to store in the verbal entries of a computational lexicon. Infor-
mation about syntactic behaviour is crucial, since this information is central to successful parsing.
Furthermore, the preferences that verbs have for the semantic type of their arguments has been
used in many tasks, including structural disambiguation (Resnik, 1993b; Abe & Li, 1996) word
sense disambiguation (Wilks & Stevenson, 1998b; Resnik, 1997; Federici, Montemagni, & Pir-
relli, 1999), anaphora resolution (Ge, Hale, & Charniak, 1998; Murata, Isahara, & Nagao, 1999)
and proper noun resolution (Wakao, Gaizauskas, & Wilks, 1996).

Verbs frequently permit their arguments to be expressed syntactically in more than one way.
Such verbs are said to exhibit diathesis alternations. What is particularly interesting about these
diathesis alternations is that they relate to both the syntactic behaviour and the lexical semantics
of verbs. A particular alternation is typically associated with a number of verbs and the semantic
properties of the participant verbs license the associated syntactic behaviour (Levin, 1993). In this
thesis, we build on earlier work on the automatic acquisition of subcategorization frames (SCFs)
and selectional preferences, and bring these two information sources together for automatically
identifying verbal participation in diathesis alternations.

1.1 Automatic Lexical Acquisition

Automatic acquisition of lexical knowledge is an active area of research within NLP. This is be-
cause useful NLP systems will typically require lexicons with several thousand lexical entries, even
for quite restricted domains. In a lexicalist approach, most information, such as subcategorization
information, is pushed out of the grammar, and into the lexicon. This is arguably an appropriate
place to express generalisations as well as idiosyncracies. Manually encoding all the lexical in-
formation required would be a costly enterprise, and certainly not a cost effective approach, since
there are other ways of obtaining much of the information. Methods for automatic acquisition of
lexical information have been developed for many areas, including collocations (Dunning, 1993;
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Smadja, 1993), syntactic category (Finch & Chater, 1991; Schütze, 1993), word senses (Pereira,
Tishby, & Lee, 1993; Schütze, 1992), subcategorization frames (Brent, 1991, 1993; Manning,
1993; Ushioda, Evans, Gibson, & Waibel, 1993; Briscoe & Carroll, 1997; Carroll & Rooth, 1998)
and selectional preferences (Resnik, 1993a; Ribas, 1995a; Li & Abe, 1995; Pozanski & Sanfilippo,
1996; Abe & Li, 1996; Rooth, Riezler, Prescher, Carroll, & Beil, 1999). In this thesis we report
our work on the acquisition of diathesis alternations, alongside other related work (Schulte im
Walde, 1998; Lapata, 1999; Stevenson & Merlo, 1999).

Previously, lexical acquisition has been performed by obtaining data directly from machine
readable dictionaries (MRDs) (Boguraev, Briscoe, Carroll, Carter, & Grover, 1987; Sanfilippo,
1994; Montemagni, 1994; Slator & Wilks, 1990), but this has been fraught with difficulties. MRDs
are usually general purpose resources. They introduce many senses (and therefore ambiguities)
not necessary, or relevant, to the domain and task at hand. They are built by human lexicographers
for human readers and are therefore prone to human errors, inconsistencies and omissions (Briscoe
& Carroll, 1997).

Most automatic acquisition is now done from corpora. Lexicons acquired from corpora are
also subject to error, however the errors that they embody are of a different nature to those in
human built resources. These errors arise from flaws in the software system processing the corpus,
and also as a direct consequence of the use of naturally occurring data. Corpus data, even from
a written source, is full of semantic anomalies and ungrammatical fragments of language. In
automatic acquisition, these errors are considered as noise. A principal advantage of using corpus
data is that frequency information is available. This is important in many NLP applications and
crucial for statistical approaches. The frequency data, as well as the linguistic phenomena, is
relevant to the corpus data from which it is acquired. The training data is selected to match the
genre anticipated for the application. When changing to a new sublanguage it may be possible
to simply retrain on material of the appropriate type. For radical differences in the corpus data,
changes will probably be required to the software.

Although statistical lexical acquisition from corpora is now the norm, many researchers use
some a priori knowledge to guide the collection of statistics (Gazdar, 1996; Klavans & Resnik,
1996). There are many ready made syntactic inventories, for example for SCFs or part of speech
(POS) tags, which are suitable for use with many sublanguages. Existing semantic inventories,
on the other hand, are usually hand-crafted for a particular sublanguage, or else general purpose
resources are used. Hand-crafting a semantic resource for a particular sublanguage can require
substantial up front effort. On the other hand, using a general purpose semantic resource brings
with it the disadvantage that the knowledge contained therein is likely to be somewhat at odds
with the text types required for the application. In either case, using a priori knowledge introduces
the possibility of human error. The inadequacies of the a priori knowledge are, in principle, com-
pensated for by the collection of corpus statistics over symbols supplied in advance. These are
assumed to be appropriate, on the whole, for the task. Any human error introduced is diminished
where it is not attested in the corpus data. The residual drawbacks are also compensated for by a
potential increase in coverage (Li & Abe, 1996) and reduction in training time, compared to the
use of automatically acquired classifications, which themselves fall prey to anomalous classes.

Li & Abe (1996) experimented with both human built semantic taxonomies and automatically
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acquired classifications. They indicated different benefits associated with either approach. In the
work reported in this thesis, we have endeavoured to acquire lexical information from corpora,
but we have used knowledge from external sources to help structure this acquisition. We list the
external sources below in section 1.6.

1.2 Diathesis Alternations

Diathesis alternations are different ways in which the arguments of a verb can be expressed syn-
tactically. These alternations are typically accompanied by subtle changes in meaning and usually
apply to a number of verbs. Diathesis alternations lie at the bridge between lexical semantics and
syntax since there is a strong relationship between a verb’s participation in specific alternations
and the semantic properties of the verb. Levin (1993) has manually produced a semantic classifi-
cation of over 3000 verbs based on their participation in her inventory of 80 diathesis alternations.
This inventory deals mainly with alternations involving noun phrase (NP) and prepositional phrase
(PP) constituents. Examples of alternations include:

The dative:

(1) a. She gave the dog a bone.

b. She gave a bone to the dog.

The causative-inchoative alternation:

(2) a. The boy broke the window.

b. The window broke.

The implicit object construction:

(3) a. The boy ate the popcorn.

b. The boy ate.

In the first two alternations, arguments of a particular semantic type have different grammat-
ical relationships with the verb in the alternate syntactic realizations. In the second and third
alternations, an argument is omitted. In this thesis, we propose a method to automatically ac-
quire alternations of the first type, whether or not an argument is omitted in one of the alternating
variants. We refer to these as ‘role switching alternations’ (RSAs).

1.3 Our Contribution

We propose a method to directly detect the switch of a particular argument type between different
grammatical slots in alternating frames. We use SCF information to identify verbal candidates with
the relevant syntactic behaviour, and to obtain argument heads specific to the appropriate slot and
SCF. We then use selectional preference information to find cases where the semantic type of the
argument in one grammatical slot does in fact switch position to another grammatical slot in the
alternating variant.
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The SCF and selectional preference information that we use are acquired automatically. SCF

acquisition and selectional preference acquisition therefore present subgoals for our thesis. How-
ever, a considerable amount of research has been done in these areas and so we use this research
where appropriate, with modifications where necessary.

1.3.1 SCF Acquisition

There have been a substantial number of contributions in this field (Brent, 1991, 1993; Manning,
1993; Ushioda et al., 1993; Briscoe & Carroll, 1997; Rooth et al., 1999; Korhonen, Gorrell, &
McCarthy, 2000). Brent (1991) showed that a set of 5 SCFs could be recognised successfully using
information from unambiguous cases. He avoided the need for syntactic analysis by, for example,
using only pronouns to detect noun phrases. He used a binomial hypothesis test to statistically
filter out cases where the cue had occurred less than would be expected by chance. Since he
only used unambiguous cases, he could not provide frequency information, or even a rank order,
alongside the SCF information. Such information is valuable for any computational lexicon, and
particularly necessary for any statistical model making use of the SCF entries. For this reason,
other researchers in this field have sought evidence from all examples from the training data, and
this has necessitated syntactic analysis of the training data.

Ushioda et al. (1993) and Manning (1993) both used POS tagged data and finite state NP

parsers. Ushioda’s system recognised six SCFs and provided frequency information alongside
this. Manning used syntactic information, like Ushioda, but also used a statistical filter, like Brent.
He permitted less reliable cues than Brent and relied on a stricter mechanism of filtering to ensure
reliability. He recognised 19 SCFs, though some of these were parameterised by a preposition.

Briscoe & Carroll (1997) developed a more comprehensive SCF acquisition system. This
system distinguishes 161 SCFs, and returns relative frequencies for each SCF found for a given
verb. The input text is POS tagged using an HMM tagger (Elworthy, 1994) and the CLAWS-2
tagset (Garside, Leech, & Sampson, 1987). The tagged text is then lemmatised with an enhanced
version of the morphological analyser provided in the General Architecture for Text Engineering
(GATE ) (Cunningham, Gaizauskas, & Wilks, 1995) software environment. The lemmatised text
is fed to a shallow parser. A patternset extractor operates on the parser output and produces
subcategorization patterns from the shallow parses. These patterns are classified according to the
inventory of 161 SCF classes, or rejected as unclassifiable. Finally, the hypothesised SCF entries
are filtered to remove those for which the quantity of evidence is less than or equal to that expected
by chance.

Carroll & Rooth (1998) proposed an iterative approach for estimating SCFs. They used a
probabilistic version of a manually developed context-free grammar of English. They trained this
using the expectation-maximisation (EM) algorithm, and lexicalised the grammar with argument
heads detected using the grammar rules. They ran the EM algorithm again to estimate the expected
frequencies of a head word occurring with specified SCFs. Probability estimates were then fed
back into the grammar for the next iteration. Carroll & Rooth reported promising results for three
verbs on applying their technique to the British National Corpus (BNC) (Leech, 1992).

The performance in terms of precision and recall varies depending on the test data, but many
systems achieve somewhere around 80% token recall. This is particularly impressive for the
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Briscoe & Carroll (1997) system since they have to differentiate between 161 SCF types. We
use this acquisition system for the work described in this thesis. The large inventory of SCFs that
the system handles is helpful for finding candidates with appropriate syntactic behaviour for iden-
tifying diathesis alternations. Additionally, argument head data is supplied at specified slots at
the entries for verb and SCF. We do not propose any further modifications to this SCF acquisition
system in this thesis. 1

We use the SCF lexicon from the SCF acquisition system for identifying RSAs. The SCF ac-
quisition system is used to establish candidate verbs which take the alternating SCFs involved in
the RSA. To specify the SCFs involved in a target alternation, we utilise a mapping between the
SCFs of the Briscoe & Carroll SCF acquisition system and the alternations specified in Levin. 2 We
hereafter refer to this mapping as the Levin–SCF mapping.

For many alternations, information from the SCF system is not, by itself, sufficient for diathesis
alternation identification. However, the SCF lexicon can be used directly in cases where it is. Gen-
erally speaking, evidence from the argument heads is required and in these cases the entries in the
SCF lexicon, which provide argument head data, can be fed to our selectional preference acquisi-
tion system. Tuples of the form � verb, slot, lemma � , for example � eat � direct ob ject � biscuit � ,
are created from the SCF entries. In these tuples, the slot relates to the specific syntactic slot of
the verbal predicate, and for diathesis alternation identification this also specifies the SCF frame
in which it appears. The lemma is an argument head which occurred in the training data at this
specified slot. In this thesis we only deal with arguments which are expressed as noun phrases
(NPs) or prepositional phrases (PPs). The argument head in both cases is the noun heading the NP.
For PPs, the preposition is specified along with the verb in the tuple: � verb:prep, slot, lemma � .
For diathesis alternation identification, the slots of the SCFs at which the role switching occurs will
be referred to hereafter as the target slots. For example, the target slots of the causative alternation
are the direct object slot of the transitive SCF, and the subject slot of the intransitive SCF.

1.4 Selectional Preference Acquisition

In chapter 2, we provide a full account of the background to this area, and describe the sys-
tem which we modify. A large variety of systems have been already proposed. These can be
broadly categorized as lemma based systems, class-based systems or similarity-based systems.
Lemma based systems use the argument heads directly. Class-based systems reduce the problems
of sparse data by permitting generalisations where a specific � verb, slot, lemma � has not been
seen. In similarity-based systems, distributional evidence is used for smoothing, without explic-
itly producing classes. For diathesis alternation identification, we advocate the use of class-based
selectional preferences to reduce the problems caused by sparse data: many lemmas in one target
slot will not also occur at the target slot in the alternating SCF in any naturally occurring sample
of corpus data, even though they are acceptable in both slots. However, we use a lemma-based
experiment as a baseline in chapter 5, for comparison with class-based preference models.

The modifications that we have applied to the selectional preference acquisition method in-
1Although there is scope for further modifications and we have collaborated with other researchers working in this

area (Korhonen et al., 2000).
2The mapping is the work of Anna Korhonen. We are indebted to her for the use of it.
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clude the use of word sense disambiguation (WSD) on the argument heads and the classification
of proper nouns. WSD is a vast area of research, and we have investigated several possibilities for
disambiguation of the argument heads.

1.5 Diathesis Alternation Identification

There has been some recent interest in the automatic acquisition of diathesis alternations (Resnik,
1993a; McCarthy & Korhonen, 1998; Schulte im Walde, 1998; Lapata, 1999; Stevenson & Merlo,
1999; Rooth et al., 1999; McCarthy, 2000). The early work by Resnik was specific to implicit
object alternations, characterised by the transitive and intransitive frames, where the direct object
of the transitive frame is omitted in the intransitive. This contrasts with the causative-inchoative
alternation which involves what we are calling a role switch, where the object of the transitive
becomes the subject of the intransitive frame. Resnik used his measure of selectional preference
to test the theory that participation depends on the ease with which the omitted object is inferred.

More recently there has been some interest in identifying alternations generally. The automatic
acquisition of diathesis alternations has been made possible by technological advances in robust
parsing which have lead to the acquisition of syntactic information from corpora. In addition to
syntactic information, semantic information is required in many cases. The semantic category of
the verb would certainly help establish participation, used together with a means of mapping to
Levin’s classification (Dorr & Jones, 1996). However, this approach will not help in cases where
the semantic class of the verb is unknown, and it increases our reliance on manmade resources,
where these are used to define the semantic categories. Schulte im Walde (1998) clustered au-
tomatically acquired SCF information and demonstrated a significant overlap between the verb
clusters and the verbs in Levin’s classification. This overlap, measured in terms of precision and
recall, was reduced when she added automatically acquired preferences as features for clustering.
Lapata (1999) used manually determined semantic cues on the argument slots. Her approach ne-
cessitated the use of a priori semantic knowledge specific to the alternation. For some alternations
this may be straightforward, for others the semantics may be harder to stipulate. Another approach
is to use cues for syntactic frames, coupled with the overlap of lexical fillers between the alter-
nating slots (Stevenson & Merlo, 1999). Again, the features used to distinguish the alternation
behaviour are specified a priori and are specific to the distinctions being made. Furthermore, in
many cases, lexical overlap will not be a reliable indicator because of the sparseness of the data.

1.5.1 System Overview

In this thesis we propose a method for identifying RSAs which is generally applicable and which
does not require hand-coded knowledge specific to the alternations. The SCF acquisition system
and the Levin–SCF mapping are used to identify potential candidates for the RSAs. The selectional
preference acquisition system is used on the argument head data, which is stored at the slots of the
SCF lexicon specified by the mapping. WSD is optionally applied to the argument head data in the
SCF lexicon. The selectional preference models can themselves be used for WSD in an iterative
approach. The major system components are shown in figure 1.1.
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Figure 1.1: System overview

1.6 External Resources Used

1.6.1 Software

We used the Briscoe & Carroll SCF acquisition system with two different parsers. Initially we used
text parsed with a probabilistic chart parser (Chitrao & Grishman, 1990). Subsequent work used
SCF lexicons built from the output of an LR parser (Inui, Sornlertlamvanich, Tanaka, & Tokunaga,
1997). The performance of the two parsers is compared in chapter 5; the differences were not
found to be statistically significant.

For named entity recognition we used the General Architecture for Text Engineering (GATE)
(Cunningham et al., 1995) software environment. This includes a named entity recognition com-
ponent. We used the VIE NE recognition system in GATE version 1.1.

For our selectional preference models, we used the noun hyponym hierarchy in WordNet
(Beckwith, Fellbaum, Gross, & Miller, 1991; Miller, Beckwith, Fellbaum, Gross, & Miller, 1993b;
Fellbaum, 1998), version 1.5. We collected corpus statistics for the classes in this hierarchy. Word-
Net has a wide coverage and is freely available, however, we acknowledge that use of this man-
made resource constrains our application to the structure of the taxonomy, and the sense inventory
defined within it. Alongside WordNet, we used the SemCor corpus (Miller, Leacock, Tengi, &
Bunker, 1993a). SemCor is a 250,000 word portion of the Brown corpus (Francis & Kučera,
1979) that has been manually tagged with WordNet sense tags. It is freely available along with
WordNet. We used this corpus to obtain sense frequency information and as a resource for WSD

evaluation.
We used the written part of the BNC for our lexical acquisition experiments. The written por-

tion totals 90 million words. We worked with parsed portions of this as they were made available
to us. However, because our methods are automatic we could process further portions in a similar
manner, given sufficient processing time. We used 4 different SCF lexicons acquired from portions
of this corpus:

1. Lexicon A - acquired from 10.8 million words of parsed text

2. Lexicon B - acquired from 1.8 million words of parsed text
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3. Lexicon C - acquired from 1.8 million words of parsed text, with proper noun recognition

4. Lexicon D - acquired from 19.3 million words of parsed text

The lexicons A, B, and C were all parsed with the probabilistic chart parser, whilst lexicon D
was parsed with the LR parser. The portion of the BNC used for lexicon A was a subpart of the
sample parsed for lexicon D. The lexicons B and C were both produced from the same portion
of the BNC, but proper noun recognition was performed on the data for lexicon B, whilst proper
nouns were left unclassified in the other lexicons. The data for the lexicons B and C was a subpart
of the sample parsed for lexicon A.

1.7 Chapter Summaries

Chapter 2. This chapter describes what has already been achieved in the area of selectional
preference acquisition. We describe the approach that we adopted, originally devised by Li & Abe
(Li & Abe, 1995; Abe & Li, 1996), and our reasons for adopting it. We describe the modifications
that we made to this approach, along with our rationale for these modifications.

Chapter 3. This chapter tackles issues concerned with sense tagging argument head data for
input to the preference acquisition system. We survey some WSD approaches and select three
which we took to be most relevant for our task. We experimented with these three approaches to
identify the levels of performance, and the resources required for training and running the WSD

modules. One approach was not taken forward for selectional preference acquisition because
of performance problems with randomly selected nouns, as opposed to nouns with clear sense
distinctions, and because of the computational cost required for training. We then applied two
WSD modules to the argument head data, and informally compared the differences that these make.
The first approach was a simple first sense heuristic. The second was an iterative approach, using
the selectional preferences themselves for WSD of the argument head data. We also experimented
with a combination of these two modules.

Chapter 4. In this chapter, we provide details of our formal evaluation of the selectional
preference acquisition system. We describe general strategies for the evaluation of automatically
acquired lexical acquisition, and then describe what has already been done in the area of selec-
tional preference acquisition in terms of these strategies. We selected evaluation methods for two
reasons: (i) to compare our results with the results of other researchers in this area, and (ii) to
compare the different parameter options within our selectional preference acquisition system.

Chapter 5. This chapter presents the main contribution of the thesis. Here we bring together
the SCF and selectional preference acquisition systems for the automatic identification of diathesis
alternations. For two RSAs, subcategorization information alone was sufficient to determine par-
ticipants. For two other RSAs, we present the results of two different approaches using selectional
preferences. The first approach was rejected since it only worked in cases where the alternating
frames have a similar frequency of occurrence. The second approach worked with both RSAs for
which we had sufficient test data. These results are contrasted with those obtained using a measure
of lemma overlap. Unlike the class-based approach, this approach did not reliably show a signifi-
cant relationship between the similarity measure and verbal participation in the target alternation,
where verbal participation was determined by human judges.
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Chapter 6. We finish with a summary of the contribution of the thesis, and directions for
future research.



Chapter 2

Selectional Preference Acquisition

Selectional preferences are the semantic tendencies that predicates have for their arguments. The
concept of ‘selectional’ or ‘semantic preference’ arises from ‘Preference Semantics’ (Wilks,
1975b, 1975a). ‘Preference Semantics’ is an approach to understanding natural language utter-
ances in terms of the semantic requirements of the words for the context that they can occur in.
Wilks’s notion of semantic requirements contrasts with Katz and Fodor style restrictions (Katz &
Fodor, 1964). Restrictions in the Katz and Fodor tradition provide hard and fast constraints that
amount to violations when they are not met. Preferences on the other hand imply a gradation
whereby alternative analyses can be ranked. In Wilks’s scheme, word combinations are analysed
in terms of a core set of primitive semantic units which can be combined in preset ways. When
analysing an utterance the constraints can be broken and no analysis is ruled out. The analysis
that is preferred satisfies more of these constraints than the other analyses, thereby providing the
greatest ‘semantic density’ for the utterance. Researchers in NLP have adopted preferences more
readily than restrictions. Finding an exclusive set of lemmas, lemma classes or features to repre-
sent restrictions is not appealing since many items appear in the data in places where our intuition
tells us they should not. Preferences allow us more readily to cope with real data. Moreover
preferences acquired automatically from empirical data allow us to avoid the difficult laborious
introspections encountered when devising the preferences manually.

In this chapter we outline current methods for acquiring preferences between predicates and
arguments. We adopt one of these methods for this thesis and at the end of the chapter we describe
some alterations that we made to the original approach.

2.1 Uses of Selectional Preferences

Preferences are frequently used for processing naturally occurring data. They capture the lexical
information which is often sought for resolving both structural and lexical ambiguity. The prefer-
ences that hold between verbs and the argument head of prepositional phrases have been exploited
as a means of resolving prepositional phrase ambiguity (Resnik, 1993a, 1993b; Li & Abe, 1995;
Abe & Li, 1996). This involves a situation where the prepositional phrase is potentially a modifier
of the NP or is acting as an adjunct or argument of the verb, more typically an adjunct. For example
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in analysing the sentence:

(4) He hit the man with the stick.

It is important to determine whether the prepositional phrase should be attached to the verb hit or
to the man. This will determine the appropriate interpretation i.e. whether the stick is used for
hitting the man or whether the man who is hit has the stick.

Preferences have also been used for disambiguating word senses (Resnik, 1997; Ribas, 1995a).
In example 5(a) below we would expect the financial institution sense of bank to be more likely
than the raised strip of earth sense given the verb rob. However, in the second example one
would expect the latter reading.

(5) a. She robbed the bank.

b. She slid down the bank.

Anaphora is another field where preferences have been applied (Ge et al., 1998). Two con-
trasting sentences exemplify how these might help:

(6) a. The packet contained chocolate but nobody was allowed to open it.

b. The packet contained chocolate but nobody was allowed to eat it.

In 6(a), the referent of it is clearly the packet since this is more likely as an object of open,
meanwhile in the 6(b) chocolate would be more likely as the object of eat. Such a task has not
yet been performed using automatically acquired preferences because of the lack of a suitably
annotated corpus. Weeding out the cases of anaphora suitable for application of preferences and
marking up potential referents is a good deal more complex than obtaining target instances for
prepositional phrase disambiguation or word sense disambiguation.

In recent years, there has been a growing trend for the speech community to look into incorpo-
rating selectional preferences into speech understanding. A field which has traditionally used sta-
tistical pattern matching in the form of hidden Markov models and neural networks (Price, 1996)
The nature and representation of the selectional preferences will of course vary but the intuition is
that preferences can help choose between alternate arguments given that we have determined the
predicate.

The application should have some bearing on the nature of the representation of the selectional
preferences. In addition to their use for natural language processing, selectional preferences are of
use to lexicographers (Ribas, 1995a). In this case, the end-product of preference acquisition must
be in a form which is easily read by humans.

The ultimate goal of this thesis is to establish a method in which selectional preference models
can be used as a means of identifying verbs where the underlying arguments (such as agent or
patient) can appear in different grammatical roles (such as subject or direct object) in different
SCFs. In our terminology, the selectional preference models can be used to establish verbal partic-
ipation in RSAs. The acquisition of selectional preferences models is a prerequisite, however, the
acquisition of selectional preference models is itself an important by-product of this research.

There is already a substantial body of research on automatic acquisition of preferences. Rather
than duplicate these efforts, we select from the approaches provided by other researchers, who
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are typically using preferences for structural and lexical disambiguation. We then supplement
the acquisition process with some modifications to the core technique. These are described in
this chapter. In the next chapter, we experiment with some WSD techniques for coping with the
massive ambiguity of the input data.

2.2 Background

A decade ago, selectional preferences or restrictions were produced manually from introspec-
tion. Nowadays, such an approach would justly be shunned because manual endeavours would be
overwhelmed by the quantity of data needed. The strong appeal of an automatic approach is the
avoidance of labour intensive methods. Moreover, reliance on human intuition falls preys to the
human errors that beset any substantial manmade resource of this nature.

In the following sections, we give an account of the automatic approaches used to acquire
preferences. Rather than compare the approaches one by one in sequence, we compare them in
terms of the data used (see section 2.2.1) and the representation (section 2.2.2). We then go into
more detail on the systems closest to our own in section 2.3. In section 2.3.3 we give a closer
account of the approach we adopt, originally proposed by Li & Abe, and in section 2.4 we describe
the changes we make to the system provided by Li & Abe.

2.2.1 The Data

Typically automatic approaches involve extracting predicate argument relationship tuples from
machine readable dictionaries or corpora. The majority view favours corpora. Dictionaries bring
with them a substantial amount of up-front effort from the lexicographers which at first glance
is appealing. For example, if we collect typical argument heads as Montemagni (1994) did, then
these will be stored by sense of the verb rather than by verb form. Of course, relying on human
preprocessing of the data in this way leaves us open to the manmade errors we are trying to
avoid when using automatic acquisition. A powerful draw of using corpora is that we can acquire
information specific to the domain of the corpus. Portability to another domain is then just a matter
of having an appropriate corpus. A further significant drawback of using dictionaries is that they
do not possess the frequency information that naturally occurs within corpora. This is important
when acquiring preferences along a continuum, rather than restrictions, since some measure of
preference is required and frequency counts from naturally occurring data provide an obvious
source.

Many researchers (Ribas, 1995a; Resnik, 1993a; Li & Abe, 1995; Abe & Li, 1996) needing
corpus data for this purpose have used the Penn Tree Bank II (Marcus et al., 1995). This cor-
pus provides a useful source of 2.6 million words of parsed text (1 million of Wall Street Journal
(WSJ) articles, 1 million from the Brown corpus and the rest from other sources). The parsers have
been produced by the Fidditch parser ( a deterministic parser) with hand-correction of the output.
Although this corpus is a useful source of syntactic relations between lexical items there is the
distinct disadvantage that for new data the manual correction involved would again be needed. For
many verb and slot combinations the Penn Tree Bank may simply not hold the quantity of data re-
quired. This is particularly important because we ultimately wish to look at diathesis alternations.
Specific subcategorization frames (SCF) are less frequent than general slots, such as the direct ob-
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ject, which occur within a multitude of frames. Alternations between these frames are rarer still.
We require a data source where, given sufficient processing time, we can process as much data as
we want without substantial human effort. Other researchers (Grishman & Sterling, 1993; Abney
& Light, 1999) allow for this by using the output from fully automatic parsers to produce the tuple
data.

The work described here employs a SCF lexicon built automatically from parses produced by
a fully automatic shallow parser. The system that produces this is described by Briscoe & Carroll
(1997). There are three main advantages to using this as the start point instead of the output from
the parser.

Firstly, the shallow parses are classified according to preconceived subcategorization patterns.
There are 161 subcategorization classes in all, giving a fine level of granularity of the frames.
The 161 classes are a superset of those found in the Alvey Natural Language tools (ANLT) dictio-
nary (Boguraev et al., 1987) and the COMLEX Syntax dictionary (Grishman, Macleod, & Meyers,
1994). The lexicon is organised by verb form with sub-entries for each SCF the verb participates
in. The argument head tokens found in the corpus are listed at the appropriate slot within a SCF

entry for a verb. For example, the entry for the transitive class for bake in a lexicon produced
from 10.8 million words of parsed text from the BNC (lexicon A) is shown in figure 2.1. This
figure displays the entry as it was output from the SCF acquisition system. The data that we are
interested in is the :TARGET, which specifies the verb, the :CLASSES which specifies the SCF

classification and the lists of lemmas with POS tags at :SLTL and :OLT1L which are the argument
heads appearing at the subject and first argument position respectively, of the specified SCF. Each
SCF classification is represented by a list of one or more SCF class numbers, 24, 51 and 161 in the
example in figure 2.1. More than one SCF class is provided by the SCF acquisition system where,
for some subcategorization patterns, the system cannot tell which of the classes is appropriate, so
all the possible classes are provided. In this case, the system cannot distinguish different control
options. Class 24 is used for plain transitive frames, exemplified in 7(a). Class 51 is intended for
raising verbs, such as seem in 7(b) and class 161 is intended for equi verbs, such as feel in 7(c).

(7) a. He loved peas.

b. He seemed a fool.

c. He felt a fool.

The subcategorization lexicon furnishes us with the means to collect data not only specific to
a particular slot, as other researchers do, but also with the option of being specific to the SCF.
When acquiring selectional preferences for general disambiguation purposes, one might not want
to go into this much detail. But, for our ultimate goal of observing preferences in slots of specific
frames for diathesis participation identification, this is crucial.

The second advantage of using the lexicon is that after initial detection of subcategorization
patterns, a statistical filter is applied to determine whether verbs co-occurring with frames do so
with sufficient evidence for this combination not to have arisen by chance. The filter is designed
to remove instances where there is insufficient evidence for the verb, given the evidence for the
frame irrespective of verb. This filter is designed to remove some of the noise from the data, which
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Figure 2.1: SCF lexicon entry for bake transitive class
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does not receive any manual correction. Particularly this filter is aimed at removing adjuncts on
the premise that they do not occur with individual verbs more than they would do so by chance.

Thirdly, SCF information is also valuable when producing preferences for PPs. There we can
use the classification to determine genuine PPs as opposed to cases where the preposition is really
acting as a multi-word complementizer. For example, he seems as if he is clever is marked by the
grammar as having a preposition (or particle) but the subcategorization pattern extraction stage
correctly identifies this as having a sentential complement.

Research has concentrated on slots involving NPs (subjects and direct objects) and PPs. This
is presumably because there is a clear relationship between the argument head of the NPs in these
slots and the verbal predicate. This thesis also concentrates on these slots.

2.2.2 Representation

The choice of representation has been the basis on which other researchers have classified alternate
approaches (Resnik, 1993a; Ribas, 1995b). They characterise a three-way split between using
words, automatic classifications from distributional evidence, and manually created word-classes.
The choice of representation is bound up with the preference extraction process. For some of the
systems mentioned here, there is more to say on the actual acquisition process and this will be
done in section 2.3.

Acquisition of selectional preferences is usually performed by examining the contexts of the
predicates (usually verbs) where the contexts are the head arguments in specified slots (usu-
ally nouns in subject, object and PP slots). There are, however, techniques originally proposed
for extracting other relationships which are relevant since they can be readily transferred to the
predicate argument relationship. For example, Church et al. (1991) investigated adjacent words,
whilst McKeown & Hatzivassiloglou (1993b) examined the relationship between adjectives and
the nouns they modify. To a large extent, these methods are transferable. Schütze (1992) avoided
pre-processing of the raw text data by using ‘window contexts’ where the window was demarcated
using a fixed distance from the target word. The choice of the representation is, to some extent,
independent of the relationship being investigated. We thus overview techniques that have been
used for other relationships since they could be applied to the arguments of verbal predicates.

Using Words

Some researchers have experimented using word forms themselves as the basis of capturing the
relationship held between predicate and argument (Church et al., 1991; Hindle & Rooth, 1991,
1993) The method used is to take a given relationship and calculate statistics such as mutual
information or the t-test between the predicate and the words in the slot under examination.

There are two main problems with this approach. Firstly, word based methods reflect word
forms rather than senses and it is the latter which are relevant for semantic constraints. For struc-
tural disambiguation tasks this may not prove too much of a problem since the word forms may
be informative enough to rank analyses. For some lexical disambiguation tasks this may present
problems. Word forms associated with specific verbs and slots could not by themselves be used for
WSD of fresh argument head data. Secondly, using word forms leaves us unable to generalise to
new data unless we apply some sort of smoothing. Word-based techniques without smoothing are
probably better suited to discovering idiosyncratic collocations (Smadja, 1993), where we would
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not wish to make generalisations to word classes. Since we are interested in preferences which
will cope with novel combinations, we do not dwell on this approach but turn to approaches that
allow some means of generalising by smoothing the frequency distribution using distributional
evidence.

Using Distributional Evidence

These approaches all exploit the tendency for words with similar semantics to occur in the same
sorts of contexts. They accord with Firth’s observation:

You shall know a word by the company it keeps! (Firth, 1957, pg.11)

In these techniques, the distributional evidence of words which occur in similar contexts is
used for generalizing and smoothing. The words can be clustered to provide automatically pro-
duced classifications using the distributional evidence (Schütze, 1992; Schütze & Pederson, 1995;
Schütze, 1998; Pereira et al., 1993; McKeown & Hatzivassiloglou, 1993a, 1993b; Rooth et al.,
1999), the proximity measures can be used explicitly for smoothing without actually producing a
classification (Grishman & Sterling, 1993), or the whole data set can be stored as an ‘example-
base’ which can be used to compare analyses for novel combinations (Federici, Montemagni, &
Pirrelli, 1997; Federici et al., 1999).

Of these three variants, clustering is the most popular. Automatic classifications have been
produced for a variety of different relationships and applications. Different clustering algorithms
and distance measures have been used to compare the context vectors, however, the fundamental
principle is to cluster words according to the distribution of the other words with which they co-
occur in the specified relationship. A great many clustering techniques and similarity measures
have been experimented with, and we do not attempt to describe or list them all here. We will
instead outline four as examples.

McKeown & Hatzivassiloglou (1993b) clustered adjectives with reference to the distributions
of nouns which they were found to modify. The distributions were compared using Kendal’s τ
coefficient. In this study, linguistic knowledge was used in addition to the occurrence data. If
two adjectives appeared together, modifying a noun, then this provided strong negative evidence
against these two adjectives being grouped together, on the basis that each adjective must be adding
something new. For example the old rusty car would indicate that old and rusty should not belong
to the same class.

In the work of Pereira et al. (1993), nouns were represented using the probability distribution
of the co-occurring verbs with which the nouns appeared as direct objects. Relative entropy was
used as a distance measure between these distributions. The clustering process was hierarchical
and clusters were formed on the basis that they preserve entropy (information) as much as possible.
Membership of the clusters was probabilistic so that words belonged to more than one class, and
membership was a matter of degree. Clustering was performed using an expectation-maximisation
(EM) algorithm (Dempster, Laird, & Rubin, 1977)

Rooth et al. (1999) also performed clustering using the EM algorithm. Unlike other clustering
approaches, the classes created contained both argument heads and verbal predicates, moreover
the verbal predicates were specified along with a slot and SCF. For example, a class was created
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witness suit laundry
court 320 240 80
clothes 30 280 300

Table 2.1: A collocation matrix
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Figure 2.2: Schütze’s semantic space in two dimensions

with verb and slot combinations including:

increase:subj:intrans, increase:obj:trans, fall:subj:intrans, decline:subj:intrans

and nouns including:

number, rate, price, amount

The class was interpreted as one involving verbs denoting scalar change and nouns denoting
things which can move along scales. In this system, the classes smoothed the data so that the
verbs (with SCF and slot, vs) and nouns (n) were not conditioned directly on each other, but on the
classes (c � C):

p � vs � n ��� ∑
c � C

p � c � vs � n ��� ∑
c � C

p � c � p � vs � c � p � n � c � (2.1)

The EM algorithm was used to find classes which provided a joint distribution for verb-noun
pairs which accorded well with the observed data.

Schütze (1992) avoided any pre-processing of the raw text data by using ‘window contexts’
a fixed distance from the target word. He used a character based window size rather than word
based because longer words provide more information than shorter words, which are more likely
to be closed class function words. He collected collocation data from within the window contexts
and then clustered words according to these co-occurrences. Thus for example, given a simple
two dimensional semantic space defined by only the context words clothes and court, the co-
occurrence matrix given in table 2.1 could be pictured graphically as in figure 2.2.

Ambiguous words, such as suit were positioned somewhere between the positions of their
respective senses, biased towards the more frequently occurring senses. These context vectors
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were then clustered automatically using the cosine between the vectors as the similarity metric.
Computationally this was expensive both in time and space because Schütze used large windows
of up to 1200 words, and the corpus had more than 50 million words, so there were few cases of
a word not occurring at all within the window of another word and hence there were not many
zero’s in the collocation matrices. To get over this, he used dimensionality reduction by means of
single value decomposition to produce a more efficient distributed representation. Singular value
decomposition selects axes in n-dimensional space which have the largest variation for the items
being clustered. In this case, n is the number of word types used to represent semantic space.
In addition to providing a more efficient representation, the dimensionality reduction achieves
smoothing by reducing the noise in the original data.

The chief disadvantage of clustering on the basis of distributional information is that the words
in the classes produced are not always semantically similar. Moreover, sometimes there is no ob-
vious relation between the class members. For example, Pereira et al. reported a cluster including
the words pollution, increase and failure, also one including state, modern and farmer. As Resnik
describes it

It would seem that the information captured using these techniques is not precisely
syntactic nor purely semantic — in some sense the only word that appears to fit is
distributional (Resnik, 1993a, pg.18)

In order to get a coherent set of classes, some researchers turn to manual editing after auto-
matic classification has taken place (Sekine, Ananiadou, Carroll, & Tsuji, 1992). Others (Basili,
Pazienza, & Velardi, 1993) spend human effort on semantically categorising the input text before
clustering takes place.

Lexical ambiguity, which affects all representations of preference, is an additional problem.
Evidence collected from corpora collapses word senses into word forms since it is the latter that
are observed. In the work of both Pereira et al. (1993) and Rooth et al. (1999), some allowance
was made for this as the clusters were ‘soft’ rather than hard Boolean ones. Membership was
probabilistic and so a word can belong to more than one cluster. However, because the data from
different senses was combined, a word type will still be positioned within clusters somewhere be-
tween the places where its respective senses would be. The conflation of word senses was perhaps
less of a problem for Rooth et al., since the distributional evidence of predicate and argument was
considered jointly.

Instead of using the distributional evidence to create an explicit classification, Grishman &
Sterling (1993) used it to estimate confusion probabilities for words. These indicated the probabil-
ity of one word occurring in the same contexts as another word, averaged over these contexts. With
these confusion probabilities they then computed the smoothed probability for a novel combina-
tion. The smoothed probabilities were evaluated on a task of separating valid triples ( � predicate,

relationship, argument � from invalid ones. In these experiments, smoothing did appreciably im-
prove coverage and recall. However, this was at the expense of the error rate. Using a manual
classification appeared to achieve better results. However, further experiments with a larger cor-
pus were suggested.

A related approach, also looking at common contexts, was the example-based or ‘analogy-
based’ approach of Federici et al. (1997, 1999), Federici, Montemagni, & Pirrelli (2000). They
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obtained co-occurrence data from a bilingual dictionary and used this to build up a data base of
previous examples, the example base, where each example held the verbal predicate, syntactic
relationship and argument head. Analogical families were drawn up between verbs which shared
contexts. For example, verbs such as fumare (to smoke)1 and accendere (to light) were linked
by virtue of sharing a direct object, such as sigarette (cigarette). Such links between verbs then
permitted inferences between novel predicate and argument combinations. For example, the co-
occurrence of accendere and pipa (pipe) would be anticipated given a stored observation of the
pattern fumare-pipa/0bject. Federici et al. used a weighted measure of the number of shared
contexts to indicate the likelihood of novel combinations.

One criticism levelled at distributional approaches is that the output does not lend itself eas-
ily to symbolic interpretation, if that is required (Resnik, 1993a). For example, in a WSD task
where predefined senses from a dictionary need to be assigned to text. Mapping from an auto-
matic classification is difficult, particularly for incongruous classes. This is over and above the
difficulties typically encountered when mapping between alternate symbolic taxonomies in the
first place (Carroll & McCarthy, 2000). Smoothing methods are particularly problematic as a ma-
trix of confusion probabilities is perhaps even further removed from symbolic interpretation than
automatically produced classes are. Automatic methods are perhaps better suited when symbolic
interpretation is not required. Indeed, for most NLP applications, symbolic interpretation is not
necessary for the final output, although it is useful during system development. Results from the
ROMANSEVAL evaluation (Federici et al., 2000) demonstrate that example bases can be readily
combined with a predefined semantic classification: each example can have a hand-coded label
attached. They divided their example base into a supervised and an unsupervised portion. The un-
supervised portion contained in excess of 17,000 patterns for 3,858 verbs. The supervised portion
contained an average of 6 labelled patterns for each of the verb senses of these verbs, giving an
average of 32 labelled patterns for each of these verbs. Of course, this means we are again tied to
human supervision which the other automatic classification systems aim to get away from.

Using Manmade Word Classes

The option of exploiting manmade taxonomies bypasses the computational expense and up-front
effort required for automatic clustering. However, manmade resources bring with them other
disadvantages. They rely on the introspections of lexicographers, even where the entries have
been produced with recourse to citations from naturally occurring corpus data. They are therefore
prone to human error and do not reflect distinctions within the sublanguage of a particular corpus.

The choice of manmade classifications available depends on the language in which they are
required. The bulk of work acquiring selectional preferences has been done for English (with some
exceptions, notably the analogy-based work in Italian, and application of the system described in
Rooth et al. (1999) to a German corpus). In English, WordNet has featured strongly as a popular
classification (Resnik, 1993a; Ribas, 1995a; Li & Abe, 1995; Abe & Li, 1996; Abney & Light,
1999). WordNet is an on-line thesaurus, organised by semantic relations rather than alphabetically.
Words are classified by their part-of-speech, (noun, verb, adjective and adverb). They are then
subdivided into small classes called ‘synsets’ where members are near synonyms of each other.
These synsets are then linked together by semantic relationships such as hyponymy (nouns and

1The English translation for the Italian is provided in brackets.
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group

family

person

relative body

armsister legbrother

hyponymy antonymy meronym

WordNet

Figure 2.3: WordNet

verbs), meronymy (nouns), and entailment (verbs). Figure 2.3 illustrates some of the relationships
between WordNet synsets.

Research that uses WordNet to capture semantic preferences has restricted itself to the noun
hyponym hierarchy as nouns are the heads of the majority of slots for which preferences are
sought. In the case of PPs, they are the heads of the noun phrase which is introduced by the
prepositions. The hyponymy hierarchy lends itself most readily to interpretation for selectional
preferences. The nouns are linked together by the hyponymy or IS-A relationship e.g. brother

IS-A relative IS-A person. 2 When a verb shows a relationship with a superordinate class, for
example, believe has a preference for person at the subject slot, then the relationship should hold
for subordinate classes too, for example brother, sister, preacher etc... .

Other relationships have not as yet been used for selectional preference acquisition. Antonymy
is potentially useful. However this relationship is usually covered by the hyponym relationship,
since there is often a common superordinate parent within the hyponym hierarchy. It is less clear
how the meronymy (PART-OF) relationship could be systematically used, since preferences at su-
perordinate classes cannot necessarily be applied to subordinate classes and vice versa. For ex-
ample, a wheel is PART-OF a bus however verbs such as drive, park and reverse which take bus as
direct object, do not readily take wheel. Some verbs do take meronymy entailments, for example
touch may take a direct object such as arm and also person of which arm is a subordinate class in
the meronym hierarchy. To use the meronym hierarchy for automatic acquisition, one would need
the system to determine the cases where the relationships were relevant.

WordNet has obvious appeal for use in acquisition of selectional preferences because of its
widespread availability, with no licensing restrictions, and extensive coverage. Additionally it has
the virtue of being organised by sense rather than form and when looking for semantic constraints
it is the senses that are relevant. The electronic version of Longman’s Dictionary of Contemporary
English (LDOCE) (Procter, 1978) (version 1) makes use of a semantic classification which is used
for the selectional restrictions on subject and object slots provided by lexicographers. This hierar-
chy is rather shallow in contrast to WordNet. The entire classification has 32 categories and some
of these are combinations of a core set of 16. It may be advantageous to reduce unnecessary search

2Throughout this thesis, we shall refer to individual synsets in WordNet using one or two synonyms which are
representative of the class. In WordNet, synsets are given unique numerical identifiers, since words can belong to more
than one synset. These would not be meaningful to the reader. Where necessary, the relationship with other synsets will
disambiguate which synset is being referred to.
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Figure 2.4: LDOCE semantic space

space by keeping to a simple hierarchy. However, it seems likely that a lot of specific predicates
will not be adequately catered for. For example, given the 16 core categories depicted in figure
2.4 the direct object slot of sail would have to be accounted for by the movable class, when a more
specific classification would be useful to distinguish, for example, cars, stones and ships.

There are now WordNet versions for some European languages other than English (Vossen,
1999). For other languages, producing a new man-made hierarchy is not an easy alternative. The
coverage needed for even a restricted domain requires considerable human effort.

The noun hyponym hierarchy of WordNet is used as the representation medium for the pref-
erences within this thesis. This makes our preferences prone to the human error inherent in the
hierarchy and characteristic of any manmade resource. However, this is to some extent outweighed
by the rigorous human effort that has gone into creating this useful taxonomy. WordNet has in ex-
cess of 60,000 classes in the hyponym hierarchy with over 88,000 word forms (version 1.5). Using
current automatic classification methods for building a hierarchy of reasonable size would require
considerable effort in post-editing to avoid incongruous classes and considerable processing time
in the first place (Resnik, 1993a). The preferences we obtain are limited to the distinctions made
within WordNet. Using corpus data does, to some extent, allow us to obtain preferences for the
sublanguage of the corpus, since areas of WordNet that are not relevant to the domain have negli-
gible frequency counts.

2.3 The WordNet Approaches

There is a common theme to the research acquiring selectional preferences using WordNet (Resnik,
1993a; Ribas, 1995a; Li & Abe, 1995; Abe & Li, 1996; Abney & Light, 1999). Preferences are
sought for subjects, objects and prepositional phrases using the head noun of subjects and objects,
and the head noun of the noun phrase for prepositional phrases. Indirect objects have been ignored
presumably because they are rarer. They could be handled by the same mechanism used for sub-
jects and direct objects. The prepositions in prepositional phrases are used alongside the verb as
an anchor for the selectional preference.

The data in the corpus is used to populate the WordNet noun hyponym hierarchy with fre-
quency counts. These counts are transformed into preference scores. Section 2.3.1 goes into more
detail of how WordNet is populated with frequency counts. The hierarchy with preference scores
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Figure 2.5: Taxonomy A

is used to represent the preferences as it stands (Abney & Light, 1999; Resnik, 1993a). Alterna-
tively, the hierarchy is searched to find a set of disjoint classes (not ancestors of one another) to
represent the preferences (Li & Abe, 1995; Ribas, 1995a). How this set is found is discussed in
section 2.3.3. The method of generalisation depends on the preference scores used and these are
described in section 2.3.2.

2.3.1 Populating WordNet with Frequency Information

Fundamental to all approaches using WordNet, is the need to produce a representation of the
hierarchy populated with frequency or probability information. There are a number of different
options for doing this. WordNet is organised by sense rather than word form and corpus data
consists of the latter rather than the former. Moreover, in the hyponym hierarchy, synsets are
linked to one another to indicate where one class shows an IS-A relation to another. When the
word chicken is observed, how should the frequency distribution be divided between the various
classes with direct membership and those with indirect membership? A probability distribution
must sum to 1 but how should the probabilities at superordinate classes relate to the probabilities
of their hyponyms?

To illustrate the difference in possible approaches, we will consider taxonomy A in figure 2.5.
The UPPER CASE letters represent classes in the taxonomy. The lower case letters represent words
with direct membership of the classes under which they appear. The arrows indicate the hyponymy
relationship and any lower case member of a hyponym is an implicit indirect member of the
superordinate classes. In this way the class T has e as a direct member and a b c d as indirect
members. A class may have more than one member e.g. U, and an item may belong to more than
one class e.g. a.

Resnik’s approach doesn’t distinguish between hyponymy and polysemy when estimating the
frequency distribution. The frequency of a noun, in a given sample, contributes to all the classes
the noun belongs to (classes � n � ), regardless of direct or indirect membership. Furthermore, each
frequency count is divided by the number of these classes to ensure that the sum of probabilities
over the entire hierarchy equals one. Equation 2.2 defines his estimation of the frequency of a
class (c).



Chapter 2. Selectional Preference Acquisition 23

Table 2.2: Resnik’s frequency and probability distributions

CLASS FREQ PROB = Freq
5

T 2
4 � 1

4 � 0 � 1
3 � 1

1 � 2 � 0833 0.416̇
U 2

4 � 1
4 � 0 � 0 � 75 0.15

V 2
4 � 1

4 � 0 � 1
3 � 1 � 083̇ 0.216̇

W 2
4 � 0 � 5 0.1

X 1
4 � 0 � 25 0.05

Y 0 0
Z 1

3 � 0 � 3̇ 0.06̇

freq � c � � ∑
n � nouns at or under � c �

1
� classes � n � �

� freq � n � (2.2)

In the work of Resnik and the other works described here, the estimation of class probabilities
from the class frequencies is the straightforward maximum likelihood estimate:

p̂ � c � � freq � c �
N

� where N � ∑
c � � all classes

freq � c � � (2.3)

A problem in Resnik’s scheme arises from the lack of distinction between direct and indirect
membership. The probabilities of hyponym classes are not propagated to their superordinates. 3

This gives rise to a number of anomalies because the contribution of a noun depends on the depth
of the classes to which it belongs directly (direct classes � n � ).

For example, given the taxonomy A in figure 2.5, if the string a b d a e is observed, the
frequency and probability distributionswould be as shown in table 2.2. The frequency contribution
from each ‘word’ (lower case letter) is shown separately at each of the classes to which it belongs,
directly or indirectly. So, for example, the frequency at class V is calculated according to its
members which appear in the string. Its members are a,b,c and d. There are 2 as in the string, and
the frequency 2 is divided by 4, which is the total number of classes that a belongs to. There is
one b in the string, and this is divided by the number of classes that b belongs to (4). There are no
cs in the string so we have 0 from this member, and 1 d, which is a member of 3 classes.

The class probabilities in Resnik’s scheme sum to 1 but there are anomalies that Resnik himself
acknowledges. For example, X and Z both have members (b and d respectively) which occur the
same number of times (once) but the classes end up having different frequency counts because of
the difference in the number of superordinate classes above them. Resnik noted in his thesis that
the assignment of class probabilities warranted further attention.

Ribas (1995a), in contrast, wanted to adhere to the maxim that the probabilities of all the
possible senses of a noun (senses � n � ) should sum to one, i.e.

3The superordinates in the hyponymy hierarchy are referred to as hypernyms in the WordNet literature (Fellbaum,
1998). This terminology has been criticised by Sampson (2000) because the Greek root for name is onym. The term for
a superordinate class in the hyponym hierarchy should therefore be hyperonym. We will adopt Sampson’s terminology.



Chapter 2. Selectional Preference Acquisition 24

Table 2.3: Ribas’s frequency and probability distributions

CLASS FREQ PROB = Freq
5

T � 2 � 3
3 � � 1

1 � 0 � 1
1 � 1

1 � 5 1
U � 2 � 2

3 � � 1
1 � 0 � 2 � 3̇ 0.46̇

V � 2 � 1
3 � � 1

1 � 0 � 1
1 � 2 � 6̇ 0.53̇

W 2 � 1
3 � 0 � 6̇ 0.13̇

X 1
1 � 1 0.2

Y 0 0
Z 1

1 � 1 0.2

∑
sense � senses� n �

p � sense � n � � 1 (2.4)

rather than the probabilities of all senses and hyperonym classes as is the case in Resnik’s scheme.
Ribas devised a local weighting scheme that would maintain this constraint. For this, he proposed
a weighting where the frequency contribution of a noun to a class gets divided by the number of
classes in which the noun has direct membership (direct classes � n � ). Additionally, the probability
of a hyperonym (p � c � ) should be the sum of the probabilities of all hyponyms plus any probability
it has by virtue of direct membership. In this way, the probability at the root of the hierarchy
should equal one. He formalised this as a weight that is applied to the frequency count for each
noun. The weight is specific to the noun (n) and class (c) and is the ratio between the total number
of classes containing n beneath and including c, and the total number of classes directly containing
n (direct classes � n � ), this is shown in equation 2.5.

weight � n � c � � � direct classes � n � � classes at or under � c � �
� direct classes � n � � (2.5)

The unweighted frequency count at any class from any noun belonging at or beneath the class
is simply the number of occurrences of that noun in the corpus. This is multiplied by the weight as
in equation 2.5. The frequency of a class is then the sum of all the weighted frequencies of nouns
in the corpus belonging by direct or indirect membership:

freq � c � � ∑
n � nouns at or under � c �

freq � n � � weight � n � c � (2.6)

The frequency and probability counts for the example string a b d a e are shown in table 2.3.
The frequency estimate from each letter is again shown separately. The contribution of a is shown
as the first component of the addition for the frequency estimation of each class it belongs to.
It belongs to classes W, U, V and T. For each of these classes, the unweighted frequency 2 is
multiplied by the appropriate weight. The denominator of the weight is 3 in all these cases, the
number or polysemes of a. However, the numerator is 1 for V and W since only one direct sense
falls under these classes. Meanwhile for U and T the numerators are 2 and 3 respectively reflecting
the membership at and under these classes.
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The basic scheme for frequency assignment used by Li and Abe4 (Li & Abe, 1995; Abe & Li,
1996) is effectively the same as that of Ribas but just expressed a little differently. The frequency
estimate for a class is initially calculated only with direct membership in mind, using the sum of
the frequencies of each noun belonging at that class divided by the total number of classes that the
noun directly belongs to. These frequencies are then cumulated up the hierarchy. The frequency
estimation, and therefore probability estimation, is, in effect, the same as that of Ribas. However,
the contributions of direct members are calculated by a separate process from those of indirect
members and this is shown in equation 2.7.

f req � c ��� ∑
n � nouns at class � c �

freq � n �
� direct classes � n � � � ∑

n � nouns under class � c �
freq � n �

� direct classes � n � � (2.7)

With either formulation, the results are the same. As can be seen in table 2.3, the probability of
the root T equals 1. Indeed, the sum of the probabilities across any set of disjoint classes covering
all leaves, will be one.5 Also, this method ensures that, for any noun, the sum of probabilities
p � c � n � at the direct classes equals one, whereas in Resnik’s scheme it is the sum of probabilities
from all classes for a noun (direct or hyperonyms) that equals one.

Abney & Light (1999) construed the task as one of generation. They placed WordNet within a
hidden Markov model (HMM) and used the forward-backward algorithm, a specialised form of the
(EM) algorithm (Dempster et al., 1977), to iteratively reestimate the probabilities of the transitions.
The probabilities were propagated from the root to the leaves in the learning phase. There was
a probability distribution over the hyponyms links of each node (class) that summed to 1. At
every class, p � child � parent � gave the probability of the transition to the child. If the child was
a terminal, a noun lemma was emitted. The handling of ambiguity was not straightforward. The
frequency count for an ambiguous word was split between its senses and the frequency counts were
only considered with respect to the parent node of the respective sense. Unfortunately the model
obtained when the basic algorithm converged still contained the ambiguity that was present in the
data. To try and resolve ambiguity, Abney & Light modified the transition weights. Instead of
using the unadulterated transition probabilities p � t � as the transition weights for the next iteration,
Abney & Light mixed in the uniform distribution u � t � at each node. The uniform distribution was:-

u � t � � 1
number o f children at each node

(2.8)

They used a mixing parameter dependent on the total frequency count for the state. More specifi-
cally:

εu � t � � � 1 � ε � p � t � � � where ε � 1
Node Frequency � 1 (2.9)

For more frequent nodes, a larger portion of the empirical distribution was used in determining the
weights. For less frequent nodes, a higher proportion of the uniform distribution was mixed in.

4We shall refer to the work in papers (Li & Abe, 1995) and (Abe & Li, 1996) as “Li & Abe” throughout, since the
two pieces of work relate to each other and both involve the same two authors.

5This is with the exception of layers involving overlap of classes which are multiple-ancestors of the same descen-
dent classes.
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During the learning phase, the weight at less frequent nodes was not backed up by the evidence
from the corpus and so weights in these areas were gradually diminished in subsequent iterations.
Where there was no empirical evidence, the uniform distribution was applied. The basic idea
was that senses in high frequency areas of the network would be preferred. This was introduced
with the hope of disambiguating word senses, but it would have affected all nodes regardless of
the polysemy of their descendants. The strategy penalised areas of low frequency. In addition
to mixing in the uniform distribution, other modifications were also made to the basic forward-
backward algorithm. These were devised to compensate for bias towards paths with more than
one sense from the same lemma, and to compensate for the effect of path length and breadth (bias
against long paths nodes with many subclasses). The authors acknowledged that the theoretical
implications of altering the basic EM algorithm in this way have not yet been analysed. The
modifications are perhaps an indication that HMMs are not well suited to representing the semantics
of IS-A hierarchies. Nevertheless the approach is appealing because it seeks to model the stochastic
process producing the training data.

In this thesis, we adopt Li & Abe’s method of populating WordNet with frequency informa-
tion. This accords with the semantics of an IS-A hierarchy where the root over all hyponyms has
a probability of 1, covering the semantic subspace. The probability at classes is dependent on
lemmas at that class and beneath, and the probability distribution over all classes of a noun, given
that noun, sums to 1.

2.3.2 Measures of Preference

The WordNet approaches use the frequency distribution over the noun classes to obtain probability
distributions, which are used for ranking analyses, either directly, or by using the probability or
frequency distributions to obtain preference scores. The preference scores can also be compared
to a threshold in tasks where a hard and fast decision is required.

Ribas has experimented with the largest range of preference measures (1995a), and we do
not seek to repeat his work. We will, however, experiment with a selection of three measures
suggested by others to further investigate their strengths and weaknesses.

The simplest measure is conditional probability p � class � verb � (Abney & Light, 1999; Li &
Abe, 1995, 1998; Li, 1998). Probabilities have the advantage that they can be readily combined
in a sound way and packaged within a probabilistic system (Li, 1998). One disadvantage is that
conditional probability does not take the quantity of the sample size into account. This means that
low frequency data may not be catered for adequately. A further disadvantage in using conditional
probabilities is that they do not control for the marginal p � c � (‘prior’ or ‘foreground’ probability).
For example, insect may have a low frequency as the subject of fly, but we need to contrast this
with the prior distribution irrespective of the verb. When we see its low frequency in the corpus as
a whole, its frequency as a subject of fly stands out. For this reason, many researchers have used
scores based on mutual information, given in equation 2.10. 6

MI � c � v ��� log p � c � v �
p � c � � p � v � � log p � c � v �

p � c � (2.10)

6All logarithms are base two unless otherwise stated.
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Mutual information is a measure often used within natural language processing which is in-
tended to measure the association between two items. Typically these items are words but for
measuring preference strength the item is usually a noun class (c) and verb (v). The measure
contrasts the conditional probability of c given v with the prior (or marginal) distribution of the c

irrespective of the verb.
A large prior probability radically affects the scores. A high preference score is not given

where a noun class has a high probability of co-occurrence with a verb if the same noun class
co-occurs with a similar probability in other contexts. Mutual information is typically higher for
more specific classes since they are easier to match to a specific context. Resnik scaled mutual
information by the conditional probability of the class given the verb. For each class, he calculated
the selectional association as given in equation 2.11 (Resnik, 1993a):

A � v � c � � 1
ηv

p � c � v � log p � c � v �
p � c � (2.11)

ηv � ∑
c

p � c � v � log p � c � v �
p � c � (2.12)

The divisor ηv provided a normalised measure (between 0 and 1) which took into account
the strength of selection of the predicate across all classes. This was given by the relative entropy
between p � c � v � and p � c � summed over all classes with respect to the target predicate. This normal-
ising factor controlled for the selectional properties of the verb across all classes. Ribas adapted
the unnormalised measure by experimenting with (i) the source of data for the prior distribution
and (ii) the weighting he used to calculate the probability distributions. Abe & Li (1996) tried
using a related ‘association norm’ measure which was in essence mutual information without the
logarithm. They reported increased performance compared to both their previous implementa-
tion using conditional probability and to Resnik’s selectional association measure on the task of
structural disambiguation. In further work (Li & Abe, 1998) they reverted to using conditional
probability. In his thesis, Li (1998) opted for probabilities because the theoretical foundations are
clear and because of the ease of combining probabilities and manipulating them in a probabilistic
system. Li also observed that simply altering the data used for the prior distribution can radically
affect matters. 7 The structural disambiguation experiments reported in Li & Abe (1998) indicated
that the association norm can be led astray by a poor estimate for p � c � .

As a terminological aside, we note that mutual information as used in natural language pro-
cessing is not the same as the mutual information of information theory. This was pointed out
by Dunning (1998). Since there is some relation, it is important to get the distinction correct.
The mutual information that we have discussed so far, which Dunning called ‘single celled mu-
tual information’, is actually a single data point in the mutual information of information theorists
(‘average mutual information’). The latter measures the association between both variables over
all values as indicated in equation 2.13:

MI � X � Y � � ∑ p � x � y � log p � x � y �
p � x � p � y � (2.13)

7Personal communication.
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We will continue to use mutual information for the single celled type since this is the term
used within NLP.

Dunning’s point was more than one of terminology. His concern was that the use of mutual
information by computational linguists is generally misguided since the measure is poor at han-
dling low frequency items. If a noun occurs next to a particular verb and has a low frequency in
our corpus we can be fooled by a high association score simply because we do not have a large
enough corpus to prove that it is genuinely rare. Dunning recommended using log-likelihood ratio
(LLR) tests instead. These are referred to in some texts as G2. Dunning demonstrated the utility of
the binomial version of this test for finding highly associated bigrams (Dunning, 1993). The ad-
vantage is that such tests they take the sample size into account and can better detect relationships
between word pairs which are unusual when considering the prior distribution. LLR selects pairs
which have unexpected relationships rather than trying to measure the degree of association. In
this way, it acts as a filter to detect relationships that would be unlikely to have occurred by chance
rather than simply those that have a high association score. For example, a pair of words that occur
together once may have a strong association score, but the result does not indicate how likely this
is to have occurred by chance. One of the words in the pair may have only occurred this one time
in the entire sample and its co-occurrence with the other word might be quite coincidental.

Many of the tests used in computational linguistics for identifying relationships between words
are inappropriate because they mishandle low frequency items. As is well known, low frequency
items are common-place in natural texts, in accordance with Zipf’s law (Zipf, 1935). Many sta-
tistical tests, such as z-score tests, assume that the underlying variables are normally distributed.
Dunning recommended LLR because it does not depend so highly on assumptions of normality
and therefore allows the comparison of rare events with common ones. It is a parametric test, but
it assumes the distribution of the generalised log-likelihood ratio and Dunning reports that it can
be applied to much smaller texts than tests which are based on the normal distribution. It should
be noted that, whilst mutual information along with other metrics are criticised for over-estimating
low frequency items, the binomial LLR has been observed to go the other way and underestimate
these (Dunning, 1993; Ribas, 1995a; Pedersen, 1996).

Dunning demonstrated that LLR 8 is useful for finding significant co-occurrences between
words. This measure can also be used for finding selectional preferences between predicates and
arguments. The task can be construed as one comparing two binomial distributions. For example,
assume we are considering head nouns, instead of noun classes, appearing in the direct object slot
of the target verb. The counts collected are:

1. verb and and noun together (k1)

2. verb with any other noun (n1 � k1)

3. noun with any other verb (k2)

4. other noun with any other verb (n2 � k2)
8Hereafter, references to LLR refer to the binomial version of this test.
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The LLR statistic is :

� 2logλ � 2
�

logL � p1 � k1 � n1 �
� logL � p2 � k2 � n2 �

� logL � p � k1 � n1 �
� logL � p � k2 � n2 ��� (2.14)

where

logL � p � n � k � � k � log p � � n � k � � log � 1 � p �

and

p̂1 � k1
n1

� p̂2 � k2
n2

� p̂ � k1 � k2
n1 � n2

The statistic tests the likelihood that the probabilities p1 and p2 are the same, i.e. whether the
probability of the noun occurring given that the verb has occurred is the same as the probability
that the noun has occurred given that the verb had not occurred. If this were the case, then LLR

would be 0. A large LLR indicates that any association is unlikely to be due to chance. LLR is not
a measure of the strength of the relationship and it can indicate a relationship in either direction,
i.e. p1 � p2 or p1

� p2. The former would be the case for a pair of words which occur together
more than expected, whereas the latter indicates that the pair co-occur less than anticipated.

The examples below help to illustrate the differences between the association norm measure
(Abe & Li, 1996) and LLR. Suppose that hedgehog is seen once as direct object to eat and not with
any other verb. In contrast ketchup is seen twice with eat and twice with other verbs. The asso-
ciation score for ketchup halves in value, meanwhile LLR increases with the additional evidence.
Sandwich is seen four times with eat and four times with other verbs. The association scores stays
the same as for ketchup since the ratio is the same but LLR is more than doubled thanks to the extra
evidence.

eat hedgehog Ass = 1
100 / 1

100000 = 1000

LLR = 1
99 � 1 vs 0

99900 � 0 = 19.9

eat ketchup Ass = 2
100 / 4

100000 = 500

LLR = 2
98 � 2 vs 2

99898 � 2 = 31.9

eat sandwich Ass = 4
100 � 8

100000 = 500

LLR = 4
96 � 4 vs 4

99896 � 4 = 64.0
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Table 2.4: Contingency table for eat sandwich

sandwich � sandwich totals
eat 4 96 100

� eat 4 99896 99900
totals 8 99992 100000

LLR tests provide a viable alternative to the mutual information based association measures
but there are others. Pedersen recommended the use of Fisher’s exact test (1996) for finding
dependent bigrams. Both tests are calculated with reference to contingency tables drawn up for the
data observed. For the binomial (bigram) case, there are two rows and two columns representing
the two variables as illustrated by the example in table 2.4. The calculation of LLR is given above.

Fisher’s exact test is performed by exhaustively computing the probability of every contin-
gency table that would lead to the marginal totals observed in the data. This can be extremely
costly for some tables. The primary advantage this test has is that it does not assume an underly-
ing distribution. It is therefore more reliable in cases where we cannot be sure what the underlying
distribution of the data sample is like. In Pedersen’s experiment bigrams were ranked according
to (i) Fisher’s exact test (ii) χ2 approximation to LLR (iii) χ2 approximation to Pearson’s X2 and
(iv) the t-test. For the dependent bigrams, the ones where the words were clearly related to one
another, the significance values were nearly identical. For the independent bigrams, there were
differences. LLR tended to be more conservative and overstate independence. There were also ex-
amples of moderately independent bigrams where LLR went the other way and indicated a lower
likelihood of independence than Fisher’s exact test. Interestingly, the ranking for Fisher’s exact
test and χ2 approximation to LLR came out the same in this experiment. Although Fisher’s exact
test is probably more reliable than LLR, since it does not assume any underlying distribution, we
are not convinced that the slight differences in performance demonstrated by Pedersen warrant the
lengthy computations. There is a further advantage in using LLR since it relates to the method we
use for finding the right level of generalisation. We shall expand more on this in section 2.4.2.

Although LLR is a better measure for finding relationships between words than measures based
on mutual information, using a class-based approach should reduce the effect of low frequency
data. Preferences are typically acquired at a level of the hierarchy where the classes cover many
words. However, it is unclear whether we would benefit from a better motivated measure in a
class-based approach since many classes will have low frequency. Thresholding is not a tidy way
of handling low frequency data. A method better equipped to deal with these items is desirable.

In a class-based approach, the nouns are replaced by noun classes in the calculations. Ribas
has experimented obtaining preferences using a variety of measures including LLR. LLR indi-
cates a relationship in either direction (preference and dispreference). In his use of LLR, Ribas
searched for classes with a high LLR score only where the score reflected a preference. In his
experiments, LLR achieved similar results to the association measure, although it did seem to be
more conservative and more accurate.

All scores have advantages and disadvantages. Conditional probability permits integration in a
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probabilistic system. Association measures give us an intuitive measure of association, taking into
account the frequencies of the classes regardless of context. LLR is better equipped for handling
low frequency data. In this thesis, we experiment with all these scores. This allows some choice
for diathesis alternation identification techniques and provides a contribution to research into the
relative merits of these scores for preference acquisition. We use a signed version of LLR indicating
the polarity of the relationship. Unlike Ribas, we seek classes with high absolute values, since high
negative scores should be as informative as high positive scores.

2.3.3 Preference Output

Having settled for an approach based on WordNet, a method of populating the WordNet hierarchy
with frequency information, and some preference measures, we now need a method of extract-
ing the classes and scores to represent our preferences. But which classes should be included?
Resnik’s early work searched for the best class for each verb (Resnik, 1992). However, if a best
first search is conducted this will lead to getting stuck on local optima (Ribas, 1995a). In addition,
one needs to allow for cases where the verb has preferences in more than one area, which is espe-
cially common where the verb form is polysemous. In later work, Resnik (1993a, 1997) retained
the verb specific scores for the entire hierarchy for WSD and structural disambiguation applica-
tions. Abney & Light (1999) also kept the full hierarchy, in the guise of a HMM for each verb.
The storage overhead of this must be balanced by the requirements of the application. For speech
recognition, one might want estimates for p � lemma � class � and p � class � verb � and the expense may
well be warranted. For other applications, such as ranking word senses or PP-attachments, the
expense may not be justified.

Other researchers have sought a set of disjoint classes that cover the hierarchy. Ribas retained
the highest scoring disjoint set of classes using his adaptations of Resnik’s selectional association
measure to find these classes.

Li & Abe (1995, 1996) used a representation of selectional preference bearing a resemblance
to that of Ribas. This comprised a disjoint set of classes across WordNet with attached scores. Li
& Abe devised a novel method of finding the best generalisation level, a method that has some
clear theoretical underpinnings. We adopt Li & Abe’s method of acquiring preferences, with some
modifications.

Generalisation with the Minimum Description Length Principle

Rather than modify the association measure, as Resnik and Ribas did to get the correct level of
generalisation, Li & Abe (1995, 1996, 1998) used a principle of data compression from informa-
tion theory to find the appropriate level of generalisation. This principle is known as the Minimum
Description Length (MDL) principle. In their approach, selectional preferences were represented
as a set of classes or a ‘tree cut’ across the hyponym hierarchy which dominated all the leaf nodes,
representing the noun senses, exhaustively and disjointly. Thus, a tree cut was a set of classes
across WordNet that together covered all the leaves, and where none of the classes were ancestors
of any other class in this set. The set of root classes of WordNet was just one possible tree cut. To
ensure all noun senses occurred at or under a class on any tree cut, Li & Abe only used a shallow
version of WordNet by prunning at classes where a class member had occurred in the corpus data.
We comment on this further in section 2.4.1. The tree cut featured in a model, termed a ‘tree cut
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model’ (TCM) which identified a score for each of the classes in the cut. This score was obtained
from the corpus data and was used to indicate the preference for the class, and noun senses falling
under that class.

The MDL principle (Rissanen, 1978) bears a resemblance to Occam’s Razor. This is attributed
to William of Occam who is credited with saying:

”Entia non sunt multiplicanda praeter necessitatem”

The rule states that entities should not be multiplied needlessly. This is interpreted to mean “if
two theories explain the facts equally well then the simpler theory is preferred” and is known in
logic as the law of parsimony. The MDL principle reiterates this rule in information theoretic terms
by stating that the best model is the one which has the shortest description length when measured
in bits. The description length has two components:

1. The model description length - the number of bits to describe the model

2. The data description length - the number of bits to encode the data in the model

The best model is the one which minimises the sum of these two components. This provides a
compromise between a clear and simple model and one which matches the data well.

Li & Abe (1995) initially devised a method for calculating a description length for a proba-
bilistic TCM using the conditional probability p � c � v � . We will hereafter term this a probabilistic
tree cut model (PTCM). Along with the calculations required for the description length, they
provided an efficient algorithm for searching WordNet to find the cut model with the minimum
description length. The actual encoding (in bits) was not actually produced since the optimal TCM

was all that was required. Later, in (1996), they went on to devise a method for producing asso-
ciation tree cut models (ATCMs) where the association norm measure p � c

�
v �

p � c � was used to indicate
preference strength, and was also used for calculating the description length.

For the PTCMs the model description length was the number of bits to describe the cut under
consideration, plus the number of bits to encode the parameters. Li & Abe opted for a uniform en-
coding of the cuts so that the number of bits to describe each cut was the same. This corresponded
to assuming all cuts are equally likely a priori. The number of bits to describe the parameters was
calculated by:

k
2

� log � S � (2.15)

where k was the number of free parameters (the number of classes in the cut minus one) and
� S � was the sample size. This was known to be the most efficient way of describing probability
parameters (Rissanen, 1986).

Li & Abe’s PTCMs (1995, 1998) provided a probability distribution across all leaves (noun
senses). The data description length assumed that the data was encoded using the probabilities:

number of bits � � ∑
n � S

log p̂ � n � (2.16)

The probability estimates (p̂) for a noun (n) were calculated by dividing the probability esti-
mate for each class on the cut that the noun belonged to, directly or by virtue of its membership
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of a hyponym class, by the total number of nouns at or under that class. We have described Li &
Abe’s method of estimating the probability of a WordNet noun class above in section 2.7 on page
25.

Thus, the description length for the PTCMs is defined as:

PTCM DL � k
2

� log � S � � ∑
n � S

log p̂ � n � (2.17)

Rather than searching for the classes with the highest score, MDL was used to search for
the classes which made the best compromise between explaining the data well by having a high
probability, contributing towards a low data description length, and providing as simple (general)
a model as possible, thus minimising the model description length.

In further work (1996), Li & Abe took the marginal distribution (p � class � ) into account, as
many other researchers do when obtaining preferences. They switched to ATCMs which used the
association norm. The association norm is not itself a probability, but is obtained using probabil-
ities. This complicated the calculations of the description length for the ATCMs. Li & Abe used
the method of calculating description lengths for probability distributions and then calculated the
relative cost of the ATCMs by using the identity:

p � n � v � � A � n � v � � p � n � (2.18)

A TCM was first obtained for the prior distribution (p � class � ), using the description lengths
for the TCM from the sample of head noun instances for the target slot irrespective of verb. Then,
a verb specific ATCM was derived using this fixed prior model and the verb specific data. This
was done as though the ATCM was a by-product of estimating a pair of TCMs that represented the
conditional data.

The model description length for the ATCM was calculated as for the TCM, using the sample
size for the data specific to the target verb. The model description length for the TCM (prior
distribution) was not incorporated into this since it was fixed by the time the ATCM was determined.

The data description length can be written in two parts:

∑
n � S

� log p � n � v � � ∑
n � S

� logA � n � v � � ∑
n � S

� log p̂ � n � (2.19)

the sample (S) was the data for the target verb, whereas the model for the prior distribution was
estimated using the entire data set for the specified slot, irrespective of the verb. The summations
were performed over all nouns (n) in the sample. These were represented by the classes in the
TCM being examined. The second term was dropped as the TCM for the conditional distribution
was not actually required and this term did not affect selection of the optimum ATCM. To obtain
the first term, Abe & Li outlined a method of estimating the probability at a particular class given
the fixed prior TCM either above or below it. If the class fell under a class on the cut then a portion
of probability estimate on the cut was assigned to this class. This proportion was determined by
the number of noun senses at or under this class, divided by the number of noun senses under the
class on the cut. If the class fell above a set of classes on the cut, then the probability estimate was
taken as the sum of the estimates from these classes. Where the class fell on the cut the estimate
was taken direct from the cut model.
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Thus, the description length for the ATCMs is defined as:

ATCM DL � k
2

� log � S � � ∑
n � S

logA � n � v � (2.20)

Li & Abe provided an algorithm which searched the WordNet hyponym hierarchy efficiently
by comparing cuts locally within subtrees. The search proceeded from the leaves comparing the
cost of a cut at the leaves to a cut at the parent of these leaves. The best cut was propagated
upwards. At each class (the root of a subtree), the optimal cuts at or beneath each of the children
were appended together. The combined cost of these appended cuts was compared to the cost of a
cut at this class (subtree root) and the optimal cut was propagated up. The process continued until
the final comparison was made between the root of WordNet 9 and the best cut found beneath this.
The algorithm guaranteed finding the model with the minimum description length.

Li & Abe’s method using MDL to find the correct level of generalisation appeals to us because
its clear theoretical underpinnings guarantee that one will find an optimal model in terms of the
shortest description length. A method of generalisation is desirable given the large quantities of
data involved. We use WordNet to define our semantic space because of its availability and cov-
erage. Once extensive classifications can be built automatically then it would be interesting to
compare these, particularly in terms of their ability to exploit the semantic space of a sublanguage.
Li & Abe contrasted the use of automatic and manmade classifications on a PP attachment dis-
ambiguation task (1996). They demonstrated that WordNet achieved a greater level of coverage
than their automatically clustered taxonomy, but that their automatic classification produced better
precision. Optimal results were obtained by harnessing the two together.

There are some outstanding issues within selectional preference acquisition and we pick up on
a few of the pertinent ones, some specific to Li & Abe’s approach to acquisition, in the following
section.

2.4 Modifications to the Basic Approach

2.4.1 Alterations to WordNet Structure

Li & Abe’s approach was motivated by a theoretical standpoint on how best to obtain the correct
level of generalisation. However, they required some changes to WordNet in order to make this
work. Their scheme required that all noun senses fell under any potential cut. This ensured that all
items are covered by the probability distribution on the cut. For this reason, all noun senses had to
be placed at the leaves of the hierarchy. In order to meet this requirement, modifications had to be
made to the original structure of WordNet where nouns are found at all levels in the hierarchy. To
adhere to this constraint, Li & Abe pruned the hierarchy at classes where a direct class member
(one of the nouns in the synset) had occurred in the data. However, this strategy can give rise to
overly-general preferences when the data contains an argument which occurs higher in the hierar-
chy than the prototypical arguments of the verb. For example, in the data for lexicon A collected
from the BNC, we observed the tuple � build � direct ob ject � entity � ( � verb,slot,lemma � ). En-

tity is one of the 11 root classes of the noun hyponym hierarchy of WordNet. When the hierarchy
9We have introduced a dummy root as a parent of the eleven root classes in the WordNet hyponym hierarchy. We

refer to this hereafter as the dummy root.
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Figure 2.6: Creating leaves for internal nodes

is pruned at such a level, much detail is lost on the types of entities that are built. For example, no
distinction can then be made between the object class and the life form class.

Li & Abe’s strategy of pruning the hierarchy at all direct occurrences in the data entailed an
extremely shallow version of the hierarchy and overly-general preferences. In the work described
in this thesis, as an alternative, new leaf classes were created for every internal class in the WordNet
hierarchy. This means that terminals only occur at leaves, but that the detail of WordNet is left
intact. The frequency count attributed to nouns listed at the internal node is placed instead at the
new leaf and then cumulated up the hierarchy in the usual way.

To illustrate, look at the transformation of a small portion of the hierarchy in figure 2.6. The
class frequency distribution for three heads, substance, sandwich and food, from the direct object
slot of eat is shown by the numbers in the right-hand corner of the class boxes. 10 All classes
without numbers have zero frequency with respect to this small sample. In the unmodified version
of WordNet, it is quite possible to have a cut which does not cover all the noun senses and so
the probabilities of the classes along the cut would not sum to one. This is because nouns such
as substance occur at internal classes which can occur above a candidate cut. In our scheme the
frequency, and therefore probability, contributions from such nouns are moved down to newly
created leaves and so the probability axiom (∑c � classes on cut p � c � � 1) is maintained. In contrast,
the strategy adopted by Li & Abe would be to prune the tree at the substance class which would
result in a shallow tree with no possibility of distinguishing between a preference for food or fuel

at the direct object slot of eat.
10For the purposes of this example assume that these words are monosemous.
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Thresholding

Alongside the issue of keeping terminal word senses at leaves, is the issue of thresholding. Li
& Abe style pruning also ensured that low frequency areas of WordNet were not investigated.
Li & Abe additionally used thresholding to discard classes with a probability estimate less than
a threshold (0.05 for the PTCMs) (1995, 1998). In the ATCMs, thresholding (at 0.01) was only
performed on the model for the prior distribution, the reason for this was not given. Presumably
the ATCM cuts were typically more general than the prior model and therefore more compact.
Crucially, Li & Abe performed this thresholding after the description length calculation, so that
all classes were considered in the costing. Li & Abe stated that thresholding was performed for
clarity and to remove some of the noise resulting from factors such as erroneous word senses. The
main effect was to remove low frequency classes from the final cut.

We attempted to continue the use of Abe & Li (1996) style thresholding alongside our strategy
of creating new leaves. However, this gave rise to unacceptable performance problems: the TCM

for the prior distribution had not finished after 12 hours on a Sun Ultra. Instead, for the TCM

used for the ATCM a new method of thresholding was tried in which the subtrees of classes with
probability less than the threshold were not explored, and not included in the cost of the cut. This
altered the structure of WordNet and reduced the search space by removing low frequency items.

A significant disadvantage of performing thresholding, with either method, is that low fre-
quency areas are not covered by the cut. For the probabilistic models using the conditional data,
we do not adopt thresholding. Thresholding could be applied as in (Li & Abe, 1995, 1998) by
simply removing the classes when using or describing the cut. Since probabilistic models do not
require a prior model, they are simpler and quicker to produce. Avoiding thresholding provides a
further advantage since all areas of WordNet are covered, although this leaves the models prone to
the noise from low frequency items.

Experiment

We compared ATCMs obtained (i) with Li & Abe’s method of pruning and thresholding and (ii)
by adding our new leaves for internal nodes and our system of thresholding. The ATCMs were
obtained from lexicon A (a SCF lexicon produced from 10.8 million words of parsed text from the
BNC). The verbs were all those which were observed in a random sample of 500 sentences from
the Susanne corpus (Sampson, 1995). The preferences were acquired for the direct object slot.

We leave formal evaluation for chapter 4. On informal comparison, we observed that both the
Li & Abe models for the prior distribution and the final ATCMs were substantially more general.
Using Li & Abe’s method of pruning and thresholding on this BNC data, we obtained a model for
the prior distribution with 11 classes. This contrasted with 30 classes for the prior model using our
internal nodes and thresholding. A small portion of the two cuts in the vicinity of the entity class
is shown in figure 2.7. The detail in the prior model was matched by considerable specialisation
when the ATCM models were produced.

For example, the ATCM for the direct object slot of build using our approach included the
hyponym class object with a high association score (4.4) contrasted with a low score of 0.05 for
person l.11 Meanwhile, in our reimplementation of Li & Abe’s ATCM using the same data, we ob-

11Newly created leaves are indicated in the text with one of the words that were stored at the internal class plus a l
suffix.
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Figure 2.7: Tree cut models for the prior distribution.

tained a cut at the entity node with an association score of 1.2. This did not permit discrimination
of nouns which occur at hyponyms of this class.

For our experiments, we placed a threshold on the number of argument head instances that
were required before preference acquisition could be attempted for a given predicate and slot.
The threshold applied to the number of these instances that were classifiable in WordNet and was
set at 10. There were 395 verbs, within the sample of 500 sentences, that met this requirement
for the direct objects slot. Some of these verbs were cut at the dummy root indicating that the
MDL method did not find a preference model below this was warranted given the data. We will
hereafter refer to a cut model at the dummy root as a ‘root cut’. This occurred to a greater extent
for the Li & Abe style pruning than with the method of adding leaves for internal nodes. For Li
& Abe style prunning there were 209 root cuts (more than half the sample). Using our method,
the number of root cuts was reduced to 101. It could be that a more conservative approach, which
does not produce discriminatory preference models unless there is strong evidence, is beneficial.
However, when we looked informally at the data we concluded that many of these root cuts were
unnecessarily uninformative. For example, using Li & Abe pruning and thresholding, the model
for the direct object slot of the verb melt was cut at the root. This verb clearly does exert some
preference for the semantic type of direct objects that it occurs with. Our method provided us with
an ATCM with a high association score (36) at substance.

For PTCMs we also used our strategy of creating new leaves for internal nodes. This again
allowed more detailed cut models than those created using Li & Abe style prunning. Even using
this strategy on informal evaluation, the cuts for the PTCMs appeared to be more general than
our ATCMs. We will illustrate these differences at the end of section 2.4.2. We did not apply
thresholding to the PTCMs since they involve simpler computation than ATCMs and can feasibly
be produced without this. It would be straightforward to apply thresholding in the Li & Abe style
at a later stage, if required. Removing low frequency data feels a little like sweeping the dirt under
the carpet. Instead, we looked into incorporating the LLR statistic, which has been reported to be
well equipped for handling low frequency data.

2.4.2 LLR Models

The LLR statistic described in section 2.3.2 provides a viable alternative to the association scores.
It is better equipped to deal with low frequency items, whilst being computationally feasible. We
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used scores to obtain LLR tree cut models (LLRTCMs) with signed LLR scores along the classes
on the cut. The score associated with each class on the cut was given a sign (positive or negative)
to indicate the direction of the preference, i.e. whether the class on the cut had occurred with the
verb in the specified slot more or less than expected. These LLR scores attached to the classes on
the cut represented the preference score for the class, and all descendant leaves under the class.
Since LLR is not a probability and its calculation is clearly more complicated than the association
norm measure, it was not straightforward to arrive at a description length for these models. LLR

tests do bear a resemblance to full MDL methods (Dunning, 1998), and it is this resemblance that
we exploited when calculating the relative costs of our models.

LLR tests can be thought of as a specialisation of the MDL principle (Dunning, 1998). They can
be used to approximate the difference (measured in bits) between the encoded size of the observed
data to the encoded null hypothesis. This is the special case where the two models we are deciding
between are the null hypothesis (no difference between p1 and p2) and the unrestricted (alternative)
hypothesis (that there is an inequality in either direction). In contrast, our task involved choosing
from a variety of TCMs the one that made the best compromise between the cost of the model and
the cost of encoding the data in the model. In our algorithm for finding the TCM, we compared the
cut at each node, with the best found in the subtree beneath. These two alternative TCMs represent
two possible models to represent the unrestricted case. To obtain a preference model, we wanted
to maximise the significance of the difference between our model and the null hypothesis. When
comparing two cuts, the one with the larger LLR was preferred.

LLR can observe relationships in either direction without distinguishing them. However, a
sign can be used to indicate the direction of the relationship between the verb and argument.
This allowed LLRTCMs to express dispreference as well as preference. The association norm
measure, p � c

�
v �

p � c � , indicates negative associations with a score between 0 and 1. However, these
are unreliable because of the poor handling of low frequency items discussed in section 2.3.2.
Although we included a sign on the LLR scores in our LLRTCMs, when incorporating dispreference
into our calculations, it was important that the cut model was not penalised at levels where the
preferences and dispreferences cancelled each other out. To avoid this, the costing was performed
with no indication of the direction of the relationship. The model with the largest value of LLR

was favoured. When minimising the description length, we placed a minus sign in front of the LLR

value (equation 2.21), since we wanted the cut with the largest absolute LLR value. The scores
that we attached to the classes on the LLRTCM included a sign to indicate the direction of the
relationship.

LLR can be used as a heuristic stand in for full MDL methods (Dunning, 1998). From prelim-
inary experiments, we found that choosing a model on the basis of this measure alone resulted
in very detailed cuts. This drastically affected the time taken to acquire the LLRTCMs and also
resulted in a poor level of generalisation. The previous model description length was added to
make a better compromise between the cost (no longer a true description length) of the data, and
the cost of the model. We calculated the cost of a cut as:

LLRTCM description length � � abs � LLR � � � k
2

� log � S � � (2.21)

Our method of calculating the relative costs of the LLRTCMs no longer conforms to MDL, since
the cost does not reflect the actual cost of an encoding. It does, however, bear some resemblance in
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Table 2.5: Number of root cuts, for different models

model # root cuts
PTCM 141
ATCM 101
LLRTCM 63

that the relative costs of the alternative models are considered. We investigate whether the benefits
gained by choosing a measure better equipped to handle low frequency items compensate for the
departure from a clear calculation of description length.

Informal evaluation of the difference between the cuts obtained for the LLRTCMs, ATCMs and
the PTCMs reveal some differences. These informal evaluations are made on the models created
for the object slot of the 395 verbs with data from the lexicon described in section 2.4.1. Neither
the PTCMs nor the LLRTCMs employed thresholding. Thresholding was only employed when
obtaining the TCM for the prior distribution and only the ATCM required this. Thresholding is
likely to allow more specific cuts since lower probability detail further down the tree is ignored
and therefore a deeper cut does not incur such a high penalty. The PTCMs do tend to have less
specific cuts than the LLRTCMs and ATCMs. This is exemplified in figure 2.8 which shows a small
portion of the cut for the direct object of produce in the vicinity of the entity class. The PTCM cuts
at the entity node itself which is not very informative. Table 2.5 compares the number of cuts at
the root of the hyponym hierarchy for the sample of 395 verbs with an object slot in our sample.

It is less clear cut whether LLRTCMs are more specific than ATCMs. They have less root
cuts, but for many examples the cuts are less specific (higher in the hierarchy). From informal
evaluation, it appears that they more frequently display preferences but are more conservative and
do not go into a lot of detail unless there is a lot of evidence. The example in figure 2.8 shows
a LLRTCM cut falling between the PTCM and the ATCM. The LLRTCM is able to show a strong
dispreference for the life form class at the direct object of produce which we believe is a strong
asset of the model. ATCMs show negative associations less reliably because of their poor handling
of low frequency items.

The preferences from the LLRTCM at the object slot of feel, as illustrated in figure 2.9, are much
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more specific than the ATCM preferences. The strength of the preferences in the psychological

feature are shown by the detail and strength of the cut in this area. The ATCM has a very general
cut at psychological feature, one of the roots in WordNet. This does not allow any distinction for
nodes beneath this. For example, no distinction can be made between the subclasses concerned
with sound, smell, sight and touch. The LLRTCM, on the other hand, has a preference for the
appropriate classes concerned with sensations of touch but not the other sensations. The PTCM on
this occasion is more specific than the ATCM, although less specific than the LLRTCM.

Although a positive score on the LLRTCM tends to coincide with an association score above 1,
this is not always the case. For example, the verb produce has the class location on both ATCM

and LLRTCM cut models. In the latter, the score given is -23 indicating a dispreference whereas the
ATCM shows an association score of indicating a preference 1.4. The association score is inflated
because of a low prior probability at the location class. The PTCM records a low conditional
probability of 0.01.

2.4.3 Word Sense Disambiguation

Acquisition of selectional preferences has typically been carried out on noun lemmas extracted
from the WSJ parsed as part of the Penn Treebank II. WSD has not generally been performed on
the input data, although Ribas (1995a) has attempted to investigate the benefits by comparing
acquisition from the small sample of hand tagged text found in the SemCor data (Miller et al.,
1993a). In the work of Li & Abe, Resnik and Ribas, frequency credits have been divided between
all the senses of the words in the hope that the noise from erroneous senses is diminished with suf-
ficient data. Erroneous senses were, however, reported as a common source of error, particularly
that of over-generalisation (Ribas, 1995a). Li & Abe hoped to alleviate this problem by placing
a threshold on the class probabilities. It is likely that acquisition from sense tagged data would
provide more accurate frequency estimation, and that this will in turn produce better results on
application of the preferences to NLP tasks.
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WSD is a vast area of research in itself. Selectional preferences have long been linked with
sense disambiguation both in terms of the problems caused for acquisition (Ribas, 1995a; Resnik,
1993a; Li & Abe, 1998) and for application to the task (Federici et al., 1999; Resnik, 1997; Ribas,
1995a). In the next chapter, we characterise the field and explore some methods that might be
helpful in tagging the data input to the preference acquisition.

2.4.4 Handling of Proper Nouns

As well as being hampered by the lack of sense disambiguation on the input data, previous research
has pretty much ignored the issue of proper nouns. In early work, Resnik (1992) divided proper
nouns equally between the WordNet classes location and someone. These two classes, along with
organization cover the majority of proper nouns. They feature as roots in the hyponym hierarchy
and have clear semantic differences. In later work, Resnik (1993b, 1993a) mapped all proper
nouns to someone. Other researchers have avoided proper nouns altogether. This is perhaps a
reasonable stance in face of the considerable ambiguity they pose. However, proper nouns make
up a sizeable proportion of the argument heads of noun phrases. By employing some software
for identifying proper nouns, more data should be covered and the additional data will be less
ambiguous. The extent to which the new data is disambiguated, and correctly disambiguated, will
depend on the coverage and accuracy of the proper noun identification process.

Identifying numerical quantities such as dates, time periods and money is relatively straight-
forward and can be done with pattern matching techniques. Proper noun recognition, on the other
hand, requires a lot more consideration. General Architecture for Text Engineering (GATE) (Cun-
ningham et al., 1995) is a software environment with information extraction components freely
available to those doing research. The named entity recogniser and classifier makes use of large
lists for identifying well known organizations (mainly companies), locations (chiefly cities and
countries) and people (common names). In addition, trigger words such as ministry or airlines are
used. Finally, a proper name grammar is used alongside a bottom-up chart parser to detect and
classify multi-word proper names.

A portion of the BNC, providing 1.8 million words of parsed text, was run through the GATE

named entity recognition component. 12 On account of the time taken for processing, three days
on a SUN sparc Ultra, we did not process any further sections of text. 13

The SCF lexicon produced using the 1.8 million words (lexicon B) contained 17049 proper
names which could not be classified. Additionally 11073 were classified as person, 3986 as
organization and 2790 as location. We experimented with the data for the object slot and found
this increased the number of argument heads by 18%. The large quantity of unclassified proper
nouns do not leave things any worse off than before since they are simply ignored. There are
however some obvious sources of error. The proper noun Wexford occurred frequently in the data
and 161 occurrences were classified as location. From manual inspection, it seemed that quite a
number of these should have been classified as person. One such example was:

(8) I am going to take a shower, Wexford said coldly.
12This was the VIE NE recognition system in version 1.1.
13There were additional problems encountered when running GATE, related to the size of the files and long sentences.
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Earlier in the text, there is a section on Wexford House followed by a lengthy section relating to
a Chief Inspector Wexford. There is an additional module of a larger information extraction system
from the same team that might help with this. The module is called the discourse module and is
described by Wakao et al. (1996). The co-reference component of this module should help with
some of these errors. Semantic inferences such as selectional preferences, might also improve the
accuracy. For example, in 8 above, it is people or organizations that tend to act as the subject
of speak. In the GATE system, these semantic inferences are only applied to unclassified proper
names and are not used to change classifications already given.

We conducted an experiment using lexicon B. A sample of 28 verbs were selected at random,
subject to the constraint that they exhibited multiple complementation patterns and that they oc-
curred with more than 20 argument heads at the direct object slot in lexicon B. The ATCMs at
the direct object slot were compared with and without the proper noun resolution. The results
indicated that proper noun resolution does substantially improve coverage. Out of 28 verbs only 7
were cut at the root as opposed to 12 without proper noun resolution.

We leave formal evaluation for discussion in chapter 4. From informal evaluation, there are
many verbs for which the ATCMs with and without proper noun recognition are similar. However,
for some verbs there are striking differences. For example, without proper noun recognition, the
ATCM for the direct object slot of move is cut at the root. Whereas with proper noun resolution, the
ATCM includes a preference at location (association score 1.02). The benefit of proper noun recog-
nition will vary depending on the verb and slot combination. The effect of this will also depend
on the sublanguage of the corpus. Intuitively, one would expect Wall Street Journal processing to
benefit substantially from correct identification of organisations. The benefits to be had have to be
weighed against the additional cost. For the bulk of our experiments, and for diathesis alternation
prediction, we abandoned proper noun recognition because of the heavy processing load it placed
on our system.

2.4.5 The DAG Issue

One further problem with the structure of WordNet arises because WordNet is actually a DAG

rather than a tree. This was acknowledged by Li & Abe. They accounted for this by splitting the
hierarchy into subtrees at each case of multiple-parents in the search downwards for the best cut
model. They therefore duplicated the nodes beneath the multiple-parents, effectively creating new
senses. They were not explicit about how the frequency counts were shared between the duplicated
nodes. In our implementation, the frequency counts are incremented to ancestor classes only once
for each descendant. In areas where there are multiple parents, the frequency contribution from a
child to multiple parents is its full frequency count, and this is propagated to all parents. At these
layers in WordNet, this means that the sum of the probabilities of classes on the cut will exceed
one. We think this is intuitive in that if the parent classes jointly cover offspring then the sum of
the probabilities of the classes at the level of the multiple parents reflects this overlap.

Thus, in the example shown in figure 2.10, a frequency count of 1 detected at the person node
will only be incremented once at the superordinate entity class. A cut at this class will therefore
meet the probability axioms. A cut at the layer of causal agent and life form would however give
rise to a sum of the probabilities on the cut greater than 1. This is understandable when we take
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Table 2.6: Frequency by depth of classes with multiple-inheritance

Depth 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Freq 0 0 1 3 22 111 161 147 68 21 12 11 0 1

person
someone

cause
causal_agent

life_form
being

entity

1

1 1

1

Figure 2.10: An example of multiple-inheritance

into account that multiple-inheritance gives rise to overlap between the two parent classes both in
terms of the subsumed nouns senses and their probability.

Aside from the probabilities not summing to one at levels involving multiple-parents, there is
another unresolved problem. This arises because the method used to obtain the most appropriate
cut across WordNet relies on a tree structure and not a DAG. In the search for the best cut we, like
Li & Abe, follow all paths from a shared parent. But, in our scheme, shared descendants are not
given new senses. This may mean that there are classes in the resultant cut which are related by
hyponymy. We remove duplicates so that if the two paths suggest the same class then this is added
to the cut only once. It is, however, possible to append two cuts which overlap because one path
suggests a higher level than the other. Removing nodes on the cut which overlap in this way can
result in gaps in the tree cut and is a costly enterprise, we therefore rejected such a practise. Like
Li & Abe we do not circumvent the problem. We have not attempted to compensate for this fact
because of the small extent of the problem. On examination of the cases of multiple inheritance,
we find that less than 1% of the classes in the noun hyponym network have more than one parent
class. Moreover, the majority of such classes are deep down in the network, as can be seen from
table 2.6, and many concern compound nouns, for example school boy and head nurse, which
are not handled by our system. For ATCMs the vast majority of these cases are classes which are
pruned by virtue of having a probability beneath the specified threshold.

Cuts at the level of overlapping classes (the parents of shared offspring) will be penalised
because of the additional classes, and penalised or promoted because of the extra probability in
this area. For the ATCMs and LLRTCMs, if high preference scores are involved at this layer, then
the layer may be given preferential treatment because of this additional probability. For the LL-
RTCMs, the converse will occur in areas of dispreference. The PTCMs will be penalised at layers
of overlapping classes.
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2.4.6 Acquiring Preferences Specific to SCF

Since we use a SCF lexicon as a starting point, we are able to extract data specific to the SCF, as well
as to the verb and slot. This is important for collecting the data required for diathesis detection.
Additionally it is interesting to see the extent to which collecting data specific to SCF affects
selectional preference acquisition. Collecting data specific to a SCF may help by alleviating some
of the noise brought about because the arguments in the different SCFs are carrying out different
underlying semantic roles. For example, collecting direct objects 14 from any frame will allow
money (the ‘theme’) from example 9(a) to be amalgamated with woman (the ‘recipient’) from 9b).

(9) a. He gave money.

b. He gave the woman money.

Taking data specific to the SCF will not of course remove all of the noise. This is illustrated in
example 10, where both (a) and (b) would be assigned the same SCF, although the argument heads
are carrying out different roles.

(10) a. He pays the man.

b. He pays money.

The drawback to using SCF specific data, is the reduction in available data. For example, the
direct object slot for the �����������	��
 frame, contains 37% less argument heads compared to the
number of argument heads from all the frames which have a NP directly after the verb. The reduc-
tion in data will be considerably large for rarer frames. The reduction in noise, which compensates
for the reduction in data, will vary considerably depending on the actual verb. Looking at the di-
rect object slot of give when the data is obtained from all frames, the PTCM indicates a conditional
probability at the person l node of 0.29, possession on the other hand is 0.02 and object 0.07.
When the transitive frame is considered in isolation, person l is given only 0.07 and classes which
more typically express the ‘theme’ of give, possession and object, are slightly higher than before
(0.03 and 0.09 respectively).

2.5 Summary

The focus of this chapter is a survey of the techniques and choices for selectional preference ac-
quisition. Following a review of the associated merits and weaknesses of the different approaches,
we adopt one originally proposed by Li & Abe (1995). In this class-based approach, selectional
preferences are generalised by WordNet classes. The correct set of classes are found using the
MDL principle which finds the set of classes that makes the best compromise between being a
good fit for the data and providing a succinct model. This method is applied to argument head data
enumerated within an automatically acquired SCF lexicon, so that data can be obtained specific
to a slot, and if required to a SCF. Modifications are suggested to the original approach. These
modification include adding leaves for all internal nodes. This allows the approach to be applied to
the full structure of WordNet whilst coping with a larger input data set. An option is provided for

14We use the terms direct object and indirect object as ‘surface’ syntactic labels. In this thesis they bear no relation
to any notion of underlying semantic role.
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using a preference score better equipped for low frequency items. Ambiguity in the input data is
an important problem. In this chapter we looked into preprocessing the proper nouns with an ex-
isting system. In the following chapter we move on to ways of handling ambiguity of the common
nouns which form the bulk of our input data.



Chapter 3

Word Sense Disambiguation for Selectional

Preference Acquisition

WSD has long been associated with selectional preferences. The relationship is somewhat circular.
Preferences are semantic in nature and should ideally be acquired from sense tagged data. The
chief obstacle is that there are no sense tagged resources large enough for full scale acquisition.
Corpus data contains word forms and not senses, and it is the latter that are required for inferring
selectional preferences. The other side to this circular relationship is that selectional preferences
can be used for WSD (Federici et al., 1997, 1999; Resnik, 1997; Ribas, 1995a). The semantic
preference of a predicate for its arguments can help to determine the correct semantic class for a
particular argument instance.

Preference acquisition has been performed, for the large part, on untagged data. One exception
to this was Ribas’s experimentation (1995a) using the 200,000 word portion of the Brown corpus
sense tagged under SemCor (Miller et al., 1993a). This portion is also available parsed in the
Penn Treebank II corpus. Ribas pointed out that acquisition from ambiguous data results in a
considerable degree of noise in the resulting preferences. His experiment was performed as a way
of indicating the benefits of using sense tagged data: the benefits were demonstrated compared to
acquisition from the same quantity of untagged data. However, the limit on the quantity of data
available has an adverse affect on the preferences obtained, with or without disambiguation. The
costs of producing sufficient hand tagged data for full scale acquisition are prohibitive. Even if the
manpower was available for large scale semantic tagging, this would defeat the major advantage
of automatic acquisition, that it can be applied to a new corpus without significant overheads.

A second exception was the system of Pozanski & Sanfilippo (1996). They acquired seman-
tically annotated SCFs using the information within the Longman Lexicon of Contemporary En-
glish (LLOCE) (McCarthur, 1981) to achieve semantic disambiguation and labelling. The grammar
codes provided in LLOCE were used to help identify SCF tokens extracted from the corpus. LLOCE

semantic codes which did not conflict with the syntactic evidence were then assigned to the SCF

tokens. This research demonstrated how the knowledge within MRDs, and corpus evidence can
be usefully combined. The approach depended on the availability of an MRD with the required
information. No formal evaluation was undertaken of the acquired information.
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Basili et al. (1993) also acquired selectional preferences from semantically annotated data,
however, they manually annotated the argument head data. This is a costly enterprise which be-
comes increasingly expensive as the corpus size increases. Manual tagging has generally been
avoided for automatic lexical acquisition because of the high level of human effort required. This
chapter explores ways in which sense tagged argument head data could be produced automatically,
on the assumption that selectional preference acquisition is better performed on disambiguated
data, and taking into account the performance and requirements of current WSD techniques.

In the following section we look at the specific requirements of disambiguating word senses
for preference acquisition. In section 3.2, we briefly summarise current techniques in WSD. In
section 3.3, we identify three techniques that are taken forward for experimentation. In the subse-
quent section, 3.4, the three options are explored to investigate their performance on nouns in the
SemCor data and other, randomly selected, nominal data. Two options are chosen in section 3.5 for
disambiguating the data used for preference acquisition. Section 3.6 demonstrates the differences
observed in the preference models when these options are applied.

3.1 Requirements

3.1.1 The Targets

We require disambiguation of the corpus data input to the selectional preference acquisition sys-
tem described in chapter 2. This data consists of verb tokens each with the nominal argument head
occurring in a specified syntactic relationship with the verb token. This data can be viewed as
tuples of the form � predicate, slot, argument head � . Before extraction of the tuples from the cor-
pus, there is an opportunity to disambiguate the data with recourse to the full context. Otherwise,
any disambiguation will need to be made with only the information contained in the tuple. Either
option is possible.

Although the verb and argument head could both be targets for disambiguation, in this thesis
we restrict ourselves to disambiguating the argument heads only. This decision was made, in part,
because the SCF which we use lists entries by verb form and not sense. The contextual information
that might separate verb senses is no longer present when we look at the lexicon. Furthermore, if
we generate sense specific preferences, they cannot readily be placed back in the lexicon which
lists entries by verb form. We could, however, have generated a lexicon specific to verb sense by
tagging verb forms before building the lexicon. There was a reason for not doing so.

The main reason for not pursuing disambiguation of the verbal predicates is the prerequisite for
a sense inventory. We would require a distinction between related and unrelated senses to enable
us to amalgamate the data from related senses to alleviate sparse data problems. Furthermore, fine
grained distinctions would complicate matters for diathesis alternation identification. Diathesis
alternations are often accompanied by a slight change in meaning. They are relevant to verb senses
rather than verb forms, since it is the meaning of the predicate that gives rise to the syntactic
behaviour. The meaning components of a verb which give rise to the syntactic behaviour are
hard to pin down. Specification of the senses of a verb which should be collapsed for diathesis
detection would presuppose some of the lexical knowledge which we are endeavouring to acquire
automatically.

A wise move would be to distinguish only broad senses of a verb. The traditional distinction
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between ‘homonymy’ and ‘polysemy’ might prove useful in this case. Traditionally, the term
‘homonyms’ is used where different words have the same form. The shared word form is co-
incidental. One example is ear, where the organ of hearing sense and the part of a cereal plant

sense have different etymologies, that is they come from distinct roots historically (Lyons, 1977).
Polysemy is reserved for cases where there are related senses of the same underlying word. A
significant hurdle to an approach which relied on this distinction is that manually devised sense
inventories do not always adhere to it.

There is considerable scope for the automatic production of sense inventories for a particular
task. Brown, Pietra, Pietra, & Mercer (1991) devised such a technique for machine translation.
Sense distinctions were only considered where they gave rise to different translations. There has
also been research producing sense inventories from a training corpus (Schütze, 1992, 1998), using
automatic clustering of contexts. Whilst these results are encouraging, automatic clustering can
require manual editing before application.

In our approach, the selectional preferences of each verb and slot combination are represented
in the TCMs as a set of classes across WordNet with associated preference scores. Different senses
of any particular verb typically give rise to differences in argument structure and preferences,
unless the senses are closely related. Some slots will, unfortunately, be common to a number
of senses. For example, the object slot of serve is common to the set at table sense and to the
be useful to sense. However, the polysemy of a verb is brought out by the profile of preference
scores along the cut model. The argument heads occurring with both senses will contribute to the
TCM. Thus, for example in the ATCM on the cut for the direct object slot of serve, illustrated in
figure 3.1, the preference at the substance class reflects the sense of serving food or drink to a
person, meanwhile that at group reflects work done for an organisation.

The argument head data used for diathesis alternation acquisition is specific to SCF. This
reduces the number of verb senses involved for a given verb, slot and SCF combination. For
example, both the sack and shoot senses of fire have a subject slot, but only the shoot sense has
the intransitive frame. However, there is a residual problem that diathesis alternations involve two
(and sometimes more) frames. Because of this, it is quite possible that several different senses of
a verb will contribute data used to obtain selectional preference models for a combination of two
SCFs. Moreover, it is quite possible that the two target frames under scrutiny will not both involve
the same set of senses. For example, the transitive frame of fire arises from both the sack and
shoot senses. This is illustrated in the examples 11(a) and (b) below. Meanwhile the intransitive
frame is only permitted with the shoot sense, as shown by 11(c). 11(d) is semantically anomalous
with fire in the sack sense. Verb polysemy will undoubtedly make it harder to detect alternations
in some cases.

(11) a. The chief fired the gun.

b. The chief fired the boy.

c. the gun fired.

d. *the boy fired.

Although we avoid semantic disambiguation of verbs, we experiment with disambiguation
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<ROOT>
Example nouns under the node in the cut

relation measure
quantity

entitygroup abstraction

life_form
being

physical
object

substance

psychological
feature state

profession

dollop

need

notice
function

beer

pudding

government

sentence

tiredness

ATCM

7.8
1.5 2.3

8.5

2.0

1.8

child
artist

memory
purpose

Figure 3.1: Serve direct object slot
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Figure 3.2: Assigning frequency credit to alternate senses

of the nominal argument heads. For this experimentation, we require a WSD method capable of
tagging each argument head with the relevant WordNet class (or classes).

The original preference acquisition system copes with ambiguous data by dividing the fre-
quency credit from each lemma by the number of senses of that lemma (see page 24 in chapter
2). For example, chicken has three senses in WordNet: the meat sense, the bird sense and the
wimp sense. If chicken is observed, then p � class � for each of these senses would be 1

3 . Thus, the
frequency credit is spread uniformly between all 3 senses. This situation is shown in figure 3.2
by the white rectangle with a solid outline. Disambiguation aims to associate the total frequency
credit with only one of these classes. This is illustrated by the shaded rectangle. It is not essential
that all argument heads be disambiguated. Any that cannot be handled can be left ambiguous and
treated as before using the uniform distribution over the senses of the lemma. It is also possi-
ble, given our scheme, to allow partial disambiguation, removing some senses but not necessarily
leaving one. The remaining senses can share the frequency credit between them. For example, a
system might identify that a token was either the meat sense or the bird sense, but definitely not
the wimp sense. This is shown in figure 3.2 by the white rectangle with a dashed outline. Whilst
we do not require full disambiguation, we do aim to tackle a large proportion of the ambiguity.
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3.1.2 Evaluation and Accuracy

Human sense tagging is an extremely costly enterprise (Resnik, 1997). It is not an option if we
want an automatic method of preference acquisition that can readily be applied to new material
without additional overheads. We require an automatic WSD system that can automatically tag the
majority of nouns that appear in argument head position.

One important fact to bear in mind when comparing WSD systems is that many results reported
in the literature are evaluated in terms of a small sample of words (Wilks & Stevenson, 1998b).
Performance is hard to compare across systems since the results of any system will vary consid-
erably depending on the sense distinctions of the target words. Some systems may fare better on
different types of sense distinction. Results from a small sample of words, even if the same set
is used by different systems, may not give a clear indication of how well things would work on a
large sample.

Evaluation is a notoriously difficult area. As well as differences in the target sample, the
actual test and training data used will affect the results. Some results reported in the literature
have included monosemous words (Ribas, 1995a; Wilks & Stevenson, 1998b), for which one can
only expect 100% accuracy. It is important to have some sort of baseline provided alongside the
test data which indicates the degree of difficulty of the task. Usually the random baseline is used.
This is the result one would get if a random selection was made in every case. This is calculated
by taking the reciprocal of the number of senses for each test item, and averaging over all these
items. This is shown below in equation 3.1 where the summation is over k test words (w). In cases
where systems use supervised training data, it is common to cite the baseline obtained by choosing
the most frequent sense in every case. This is usually referred to as the ‘first’ or ‘predominant’
sense. The first sense baseline is usually higher than the random baseline.

k

∑
i � 1

1�
senseswi

�

k
� 100 (3.1)

Other aspects of the training and test data are also important. Some systems are able to exploit
syntactic or semantic preprocessing to good advantage whilst others are able to handle raw text.
The requirements of different systems make the results harder to interpret. The results of different
systems should be compared with the coverage and requirements of the systems in mind.

In the light of these difficulties in evaluation, the SENSEVAL (Kilgarriff et al., 1998; Kilgarriff
& Palmer, 2000) competition and workshop was devised in an attempt to establish a level playing
field for WSD systems to make comparison easier. Unfortunately the organisers had to drop the task
of tagging all words in a sample (the ‘all words task’) because of lack of resources. It is precisely
algorithms that can handle ‘all nouns’, or a significant proportion of them that we require. Systems
that work well with a handful of words may not perform so well on a different test set, or the all
words task (Wilks & Stevenson, 1998b). Nevertheless the SENSEVAL competition provided a
useful means to comparing the merits of systems on a target set of 35 words.

WSD tasks were set up for each of the test words. For some tasks, the senses involved all
belonged to the same POS of the target word. The POS was not supplied for other tasks. Participants
could attempt any subset of tasks, or the full set. Systems that required supervised training data
were given the same training set. No restrictions were made on the quantity or nature of data for
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unsupervised training. A crude three way classification of systems was given so that systems could
be compared alongside others in the same group with similar training requirements. The three way
classification was supervised (S), unsupervised (A) and requiring other training (O).

The sense distinctions from HECTOR (Atkins, 1993), a corpus lexicography project, were used
with tasks at three levels of granularity. The three levels were:

1. coarse grained - the main HECTOR sense divisions

2. fine grained - respecting all subdivisions of the main HECTOR senses

3. mixed grained - system responses were given full credit if they were more specific than the
manually tagged item, and partial credit if they were more general.

HECTOR was used because the inventory has not been cited in the WSD literature and so none
of the participant systems would be at an unfair advantage. All systems that relied on another
inventory were faced with the task of mapping to HECTOR senses for the competition. In addition
to the English competition, a parallel competition (ROMANSEVAL) was run for researchers using
Italian.

The level of accuracy of the WSD is obviously important, but is not critical for selectional
preference acquisition. This is because we are not considering lemmas in isolation, but collec-
tively in groups bearing a specified relationship with a predicate. A system requiring results for
each target word individually, such as a machine translation system, would not tolerate too many
mistakes. For preference acquisition we combine the disambiguated data and feed this into a sta-
tistical process. Mistakes, though undesirable, simply add to the noise. The level of accuracy
should of course be as high as possible. Minimally, preference acquisition should fare better with
than without the WSD. We can compromise a little on accuracy, but there are other factors that we
need to consider for tagging the majority of nominal argument heads. What we require is a system
that can produce a reasonable level of accuracy whilst coping with large volumes of data.

3.1.3 Machine Processing Time and Human Effort

It is important to establish the overheads involved when using WSD systems on a large data set.
Some algorithms require a substantial quantity of tagged data for supervised training. Manually
producing sense tagged data is a costly enterprise. There is a small amount of sense tagged data
available in existing resources, for example SemCor and the DSO corpus (Ng & Lee, 1996). The
quantity of data in SemCor (200,000 words) is too small for many supervised WSD systems. The
DSO corpus, meanwhile, has only a specific set of target words which are disambiguated. For some
applications there are alternative sources of training material. For example, Brown et al. (1991)
make use of parallel text for WSD for machine translation. The utility of supervised systems is
limited to situations where resources, such as aligned corpora or sense tagged data, are available.

As well as the cost of producing any data required, there are machine processing costs to
consider. Large training overheads may not be a problem for a small handful of test words, or
a small quantity of test data. However, the training overheads will quickly mount up for the all
words task as the quantity of material for disambiguation increases. Performance at run time is
also important.
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3.1.4 A Digression on Precision and Recall

Evaluation of WSD systems is frequently performed in terms of precision and recall. These mea-
sures are also used for reporting results in lexical acquisition, but there are subtle differences
between the way that the measures are calculated for lexical acquisition and the calculations for
WSD. The differences are naturally related to differences in the task, but they affect the way in
which the two measures relate to one another. In this chapter, we report results of WSD experi-
ments, however, much of this thesis concerns lexical acquisition. It is therefore important to point
out the differences in the calculations, and we do so here, before we discuss any results reported
in the literature, or report our own results in this thesis.

For lexical acquisition, the task involves identification of tokens as positive or negative occur-
rences of a particular phenomenon. The phenomenon under observation might be a particular SCF

or a selectional preference for a particular semantic class. The counts that are usually collected for
evaluation are:-

� true positives (TPs) - types (or tokens) recorded in the gold standard which are correctly
identified by the system

� false positives (FPs) - types (or tokens) which are incorrectly identified by the system. They
do not actually occur in the gold standard.

� false negatives (FNs) - types (or tokens) in the gold standard which are not identified by the
system

Precision is the proportion of guesses that the system makes which are correct.

Precision � number o f TPs
number o f TPs � number o f FPs

(3.2)

Recall is the proportion of items in the gold standard which the system guesses correctly.

Recall � number o f TPs
number o f TPs � number o f FNs

(3.3)

There is a often a compromise between obtaining a high precision and a high recall. One can
make lots of poor guesses and achieve a high recall by covering many of the items in the test set
but, at the same time, one will obtain a low precision since many guesses will be wrong. A high
precision can be achieved by taking a more conservative stance, and only guessing when one is
really sure.

True negatives (TNs) are not usually taken into account since there will typically be a large
number of phenomena which are correctly not identified in a given context. One could calculate
the percentage of things that were correct (or wrong):-

Accuracy � number o f TPs � number o f TNs
number o f FPs � number o f FNs

(3.4)

However, the number of true negatives is typically large, and, as Manning & Schütze (1999)
point out:
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One can get extremely high accuracy results by simply selecting nothing (Manning &
Schütze, 1999, pg.269)

Thus recall and precision measures are often used for evaluation.
Recall, precision and accuracy are also measures used for evaluation of WSD systems. How-

ever, the task is somewhat different to lexical acquisition and the differences are reflected in the
calculations. A verbal description of the measures does not bring out these differences, and so the
differences are not obvious. Accuracy is again the number of items labelled correctly, over the
total number of items. Recall is the proportion of items in the test set which are correctly labelled,
and precision is the proportion of items which the system labelled correctly. The difference in the
use of these measures for WSD, compared to their use in lexical acquisition, is that the set of items
which the system labels, the denominator in precision, is a subset of the items in the test set, the
denominator in recall. Precision can only be greater, or the same level as recall. The system is not
asked to make guesses on items for which a label has not been specified. The positive-negative
distinction is not really relevant and the tradeoff between precision and recall is not quite the same.
Moreover, for WSD, accuracy is equivalent to recall. The term accuracy is usually used when the
system makes a decision on all test items and so there is no distinction between precision and
recall.

Precision � number o f correct assignments
total number o f assignments

(3.5)

Recall � Accuracy ��� number o f correct assignments
total number o f test items

(3.6)

Recall and precision values reported in this chapter are in respect of WSD experiments, and
the values are calculated as in equations 3.5 and 3.6. In subsequent chapters, precision, recall and
accuracy figures are calculated as described in equations 3.2, 3.3 and 3.4 unless otherwise stated.

3.1.5 Summary of Requirements

To summarise, disambiguation of the argument head data requires a system which will:-

1. tag the majority of nouns with one or more senses from WordNet

2. be reasonably accurate

3. make little or no use of manually produced data, and

4. have acceptable training time and run time requirements

The next section provides a brief overview of the WSD literature. We do not attempt to describe
all WSD systems, since there are so many. We will instead provide a broad categorization of
systems and discuss some of the noteworthy systems. We will also single out systems which
might be suitable for our purposes.
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3.2 Background

The field of WSD is vast. A full history and survey of the field is beyond the scope of this thesis, but
we can refer the interested reader to the literature review provided by Ide & Véronis (1998). The
aim of this section is to give a characterisation of the classes of WSD systems and the requirements
and merits of these. Our classification is a modified version of the one provided by Charniak
(1993). Systems are classified according to their use of a priori knowledge (manmade MRDs and
machine readable theasauri (MRTs) and corpora (with and without sense tagging). To illustrate our
classification, we describe some of the systems that are widely cited in the field. There are four
main groups in our classification:

1. Knowledge-based approaches

2. Statistical approaches using external knowledge

3. Supervised statistical approaches

4. Unsupervised statistical approaches

In the first approach, a priori knowledge is used to select the appropriate sense given the target
context. The a priori knowledge might come from MRDs or MRTs or manmade rules. In the second
approach, corpus statistics are collected for the entities contained in a manmade resource, such as
a MRD or MRT. The manmade resource is used to structure the collection of statistics, and in some
cases to produce an automatically tagged corpus for training. The training data helps tailor the
manmade resource to the target data. In the third approach, statistics are collected from a corpus
of sense tagged data. Finally, in the fourth approach, the statistics are collected from training data
without recourse to prior knowledge or sense tagged data.

3.2.1 Knowledge-Based Approaches

These approaches make use of prior knowledge and the context of the target word. Manmade
heuristic rules with domain specific contextual cues can be used for disambiguation. Many re-
searchers have used the knowledge which exists in dictionary definitions to circumvent the over-
head of knowledge acquisition from an expert (Lesk, 1986; Cowie, Guthrie, & Guthrie, 1992;
Veronis & Ide, 1990; Agirre & Rigau, 1996; Wilks & Stevenson, 1998b).

Cowie et al. (1992) used definitions from LDOCE (Procter, 1978). They adapted Lesk’s (1986)
original idea of using the overlap between the dictionary definitions of the target word and those
of the other words in context. Cowie et al. took all the words to be disambiguated in a sentence
together, instead of concentrating on one target word at a time. The first sense in LDOCE was
selected for each of the words in the sentence as a first approximation to the solution. For each
word sense in this initial combination, the words from the dictionary definition were located and
stemmed. This is illustrated in figure 3.3 with the target sentence The butcher usually skins the

chicken. For the diagram we have simplified and removed some of the sense entries from LDOCE.
The lemmas from the definitions of the first sense of each content word are shown next to that
word, with a dashed underline. The overlap of these lemmas from the definitions was used in
a ‘redundancy measure’. This redundancy measure provided an indication of how cohesive the
combination of senses was. The system was then faced with the task of searching for the optimum
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Dictionary

* skin

1) often; generally

1) a person who kills animals for food or one who sells meat

2) a person who causes blood to flow unnecessarily

* butcher  

* usually

The  meat of the young hen cooked and eaten as food2)

* chicken1) a hen when young

3) a person who lacks courage

...

...

1)The natural outer covering of an animal or human body

2) To remove the skin from

butcher - person kill animal food sell meat

usually - often; generally

skin - natural outer covering animal human body

chicken - hen when young

" "The    butcher    usually   skins   the   chicken

Figure 3.3: Using dictionary definitions for the content words in a sentence

combination of word senses over the entire set of possibilities for the sentence. The search was
conducted using ‘simulated annealing’, a technique for solving combinatorial optimisation prob-
lems. The term ‘simulated annealing’ is used in an analogous manner to the way in which metals
cool and anneal. In the WSD system of (Cowie et al., 1992), the redundancy measure was used
within an ‘energy’ score which at each iteration guided the replacement of one sense from the
current configuration. Results were reported for a sample of 50 sentences at 47% accuracy to the
LDOCE sense level, and 72% to the LDOCE homograph level. There were 5.5 ambiguous words
per sentence, on average. The authors were not explicit about the time taken for the disambigua-
tion process but state that this was reasonable. This approach has strong appeal because it covers
all words in the sentence concurrently. By doing so, it allows the disambiguation process to draw
evidence from the disambiguation of all the words collectively.

Veronis & Ide (1990) also utilised the definitions from a MRD. They used definitions in the
Collin’s English Dictionary (Hanks, 1979) to make connections between word forms and word
senses which were represented as nodes in a neural network. The word nodes were positively
linked to the nodes which represented all the possible senses of that word. The sense nodes
had positive connections to word nodes where the words existed in the definitions of that sense.
Negative connections were made from each sense to the other senses of that word, so that activation
at any particular sense for a word diminished the activation at competing senses. Disambiguation
was performed by activating all the nodes representing words in the target sentence. As in the
work of Cowie et al. (1992), all words in a sentence were disambiguated together. Activation then
spread through the network iteratively. Finally, each word from the sentence was assigned the
sense with the highest activation value. Véronis & Ide did not provide a quantitative evaluation.

Wilks & Stevenson (1998b) reported results from a WSD system which combined a variety of
knowledge sources to perform sense tagging of all content words with LDOCE sense tags. POS

tagging was used before other knowledge sources were applied, however the POS tagging was
overturned if it did not accord with the senses given in the dictionary. The knowledge sources
comprised the pragmatic codes and selectional restrictions provided in LDOCE and the dictionary
definitions of LDOCE which were used in a modified version of the Cowie et al. algorithm. De-
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cision lists were used to combine these knowledge sources. The decision lists were inferred from
supervised training data by a machine learning algorithm. Results were reported on a 2021 word
subset of the SemCor corpus. This subset was automatically tagged with LDOCE tags by using a
mapping between WordNet and LDOCE senses. 1821 words were used as training data and results
were reported on the remaining set of 200 words. Accuracy was reported at 92% by projecting the
results to those expected for the overall corpus, assuming 100% accuracy for monosemous words.
From these results, Wilks & Stevenson concluded that a high level of accuracy could be attained
when working on the all words task, as opposed to a small sample of words. This was certainly a
useful finding, albeit on rather a small test set.

Agirre & Rigau (1996) presented a system for tagging all nouns in text using the information
held within WordNet. One noun was taken at a time. The candidate senses of this noun were
found in WordNet, along with the senses of the other nouns occurring within a context window.
The window was specified as a fixed number of nouns, with the target noun in the centre of the
window. Non-noun words were not used for disambiguation. A subhierarchy was identified for
each sense which included that sense, but did not overlap with the subhierarchy of another sense.
‘Conceptual density’ scores were calculated for the subhierarchies that the candidate senses be-
longed to. The conceptual density measure contrasted, for each subhierarchy, the number of senses
from the window context belonging to this subhierarchy, with the number of senses within the sub-
hierarchy in the first place. The candidate sense belonging to the subhierarchy with the highest
conceptual density was selected. Results were reported from disambiguation of all polysemous
nouns in 9,000 words of the SemCor text. Precision was 43% and recall was 34% to the WordNet
sense level, given a window size of 30 nouns. Agirre & Rigau advocated the use of conceptual
density alongside other knowledge sources, rather than in isolation.

Results reported for knowledge-based methods are promising, particularly in systems which
combine multiple knowledge sources (Wilks & Stevenson, 1998b). Also, much of the research
using these methods has been evaluated on the all words task. This has been possible because the
reliance on manmade knowledge avoids the requirement for sense tagged data or heavy training
overheads. A significant drawback to these approaches is the heavy reliance on handcrafted in-
formation. This may not be a problem if the manmade resource matches well with the target text.
However, performance may be affected when the technique is transferred to a different corpus. In
our preference acquisition we did make use of the manmade resource WordNet. However, we did
so with recourse to corpus statistics. WordNet presented us with a way of structuring our statisti-
cal models. Since we wished our preference models to take corpus data into account we preferred
WSD approaches that did likewise. There are approaches to WSD that make use of the combination
of a priori knowledge and corpus data and it is to these we now turn.

3.2.2 Statistical Approaches with External Knowledge

The WSD approaches in this category use corpus statistics collected with regard to the entities
contained in manmade resources. These approaches still rely on manmade knowledge, but this
reliance is reduced. The impact on WSD of any inadequacies of the manmade resource are reduced
by the statistics. Frequency counts from the corpus support the a priori knowledge only where it
is relevant to the data. There is, unfortunately, no compensation when portions of the data are not
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reflected in the resource. This can happen where there are sense omissions. Using large resources,
such as WordNet, keeps this problem to a minimum.

One such approach is the application of automatically acquired preferences to WSD (Resnik,
1997; Ribas, 1995a; Carroll & McCarthy, 2000). Preferences are acquired from untagged data and
then applied to the disambiguation task. This is done by selecting the sense of the target noun with
the highest preference score given the verbal predicate and slot.

Resnik (1997) tested the preferences for 100 strongly selecting verbs on the data in SemCor.
He used his selectional association score to predict the sense of objects, subjects, nouns in PPs and
nouns in head–modifier relationships. He achieved overall accuracy of 44%, averaged over these
relationships, with a random baseline of 29%.

Ribas (1995a) performed two experiments. In the first, he used only 4 mid-frequency verbs
rise, report, seek and present. For these he obtained a precision of 80% compared to a test set of
hand tagged examples, with a random baseline of 63%. Additionally he tried his preferences on
the full set of argument heads within SemCor. He obtained a disappointing 53% for these, which
was not significantly different from the random baseline of 52%. Ribas explained the difference
between his two experiments with regard to differences in the quantity of data for training, corpus
differences (the WSJ having less sense distinctions then the BROWN), and the selectional properties
of the verbs involved.

The substantial differences in Ribas’s and Resnik’s results can be attributed, at least in part,
to differences in the test samples. The random baselines in Ribas’s experiments were high when
compared with the random baselines in Resnik’s. This was because Ribas included monosemous
nouns in the sample. The variation in baseline brings home the importance of evaluating on the
same test data.

The SENSEVAL competition included two participant systems using selectional preferences
alone. The results are publically available (Rosenzweig, 1998). One of these was the SUSSEX

system (Carroll & McCarthy, 2000), which used selectional preference models (ATCMs) produced
using the system described in chapter 2. For the all nouns task, fine grained precision to HECTOR

word senses was 40.8%. The other system was the OTTOWA system (Kilgarriff & Rosenzweig,
2000). This system obtained a precision of 33% for the same all nouns. The random baseline on
this task was 30% with a phrase filter to handle the easy multi-word cases (14.6% without).

Looking at these results, it is evident that selectional preferences are not a panacea for WSD.
However, they do provide a useful source of information for systems which combine evidence,
such as that proposed by Wilks & Stevenson (1998b). They used selectional preferences supplied
in the LDOCE dictionary.

There are other ways of mixing prior knowledge with statistics. Yarowsky (1992, 1995) de-
veloped two WSD approaches which used external knowledge to automatically sense tag data. The
sense tagged data was then used for supervised training.

In (1992), Yarowsky disambiguated words to one of the 1024 categories in Roget’s the-
saurus (Chapman, 1977). To do this, he collected a sample of representative contexts for each
of the categories. He used concordances from a corpus (Grolier’s Encyclopedia) around words be-
longing to the category. For example, shovel belongs to the category tool. Occurrences of shovel

in the corpus contributed to the representative contexts of tool, along with occurrences of other
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members of this category. Yarowsky then identified the salient words for each of these categories
by collecting statistics over the words in the representative contexts. These statistics were then
used to identify the correct category for a target word. For example, crane might belong to tool or
animal. He achieved 92% accuracy to the level of the Roget category on the 12 words tested.

The second approach (Yarowsky, 1995) was described as ‘unsupervised’ WSD. This approach
only required external knowledge in the initial stages. It relied on initial seed collocations to
discriminate senses that could be observed in a portion of the training data. This portion was
labelled accordingly. New collocations were then extracted from the labelled sample and ordered
by a log-likelihood ratio. This measure is given in equation 3.7, where sense A of a word is
distinguished from the other senses of the same word. This measure should not be confused with
the log-likelihood ratio tests discussed in the previous chapter, although the same terminology is
used.

log-likelihood ratio � log p � sense A � collocationi �
p � other senses � collocationi � (3.7)

In Yarowsky’s (1995) system, the new ordered list of collocations was used to relabel the data.
The system then iterated between observing and ordering new collocations, and relabelling the
data, until the algorithm converged and the residual untagged data was stable between iterations.
The final decision list of collocations was then applied at run-time.

Although the approach hinged on the initial seed collocates, these only needed to provide
initial tagging for a small proportion of the training data, typically between 85 and 98%. Further-
more, the seed collocations did not have to be very accurate since poor collocations were weeded
out as training proceeded. Yarowsky produced the seeds manually but suggested that they might
be found from MRDs or on-line resources such as WordNet. Yarowsky reported results on 12
words each with two possible senses trained on a 460 word corpus. He reported 96% accuracy for
this sample of test words.

3.2.3 Supervised Statistical Methods

In a supervised training approach, a substantial portion of sense tagged training material is required
for estimation of the parameters. These parameters are the contextual clues that co-occur with
individual senses. Statistics are collected for these contextual clues in the text surrounding each
particular sense.

The sense tagged data can sometimes be produced without manual sense tagging. Brown et al.
(1991) used bilingually aligned corpora, within the context of a machine translation application.
The meaning of a word was determined by its translation. For example, in French to English
translation, prendre is translated as both make and take. This was taken to indicate two different
senses of prendre. Mutual information scores were collected for words co-occurring with the
different translations. These context words were then used as disambiguators on new candidates
for translation. Evaluation was performed in the context of machine translation. For a small
set of 100 sentences, translation was improved from 37% to 45% by the WSD component. This
evaluation does not make for easy comparison with other work in the WSD literature. However, it
did demonstrate WSD improving performance on a real task; something that is often assumed but
not proved.
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In situations where bilingual data is not available, or not relevant, one is faced with the prospect
of manually tagging data. Yarowsky (1994, 1993) applied supervised methods to tasks where the
tagged training material was already available. In (Yarowsky, 1994), supervised WSD was applied
to accent restoration. In this experiment, French accents were placed into text where they were
previously omitted. This was done by collecting statistics from other texts containing the accents.
The contexts which distinguish accents were identified and then used for restoring accents in the
target data.

In (1993), Yarowsky investigated the hypothesis that collocations are reliable indicators of
sense. Again, he used supervised methods; collecting statistics for words in the context of specific
senses. A variety of sense distinctions were taken to make use of already existing sense tagged
material. Yarowsky used distinctions from translations (e.g. prendre - make/take), homophones
(e.g. cellar/seller), words that might be confused in optical character recognition (e.g. terse/tense),
traditional hand tagged material as well as “pseudo-words” where two words (e.g. covered/waved)
were artificially combined for experimentation purposes. Pseudo-word experimentation was per-
formed by replacing each occurrence of either word with a combined form e.g. covered-waved

in the data for testing. Corpus data with the words in their original form was then available for
training to determine the relevant collocations which distinguished the individual words (covered

and waved). For some of these sense distinction options there were legitimate applications, with
sense distinctions relevant to the task. For other types of sense distinction, notably pseudo-words,
the technique simply enabled experimentation with a disambiguation procedure in the absence of
suitably hand tagged material.

The analogy-based approach of Federici et al. (1999, 2000) was a supervised approach to
WSD, implemented for Italian. We have previously described this approach on page 18 in chap-
ter 2 since it relates to the automatic acquisition of selectional preferences. Here we see that the
acquired selectional preferences can be applied to WSD, just as other WSD approaches make use
of selectional preferences. As we saw in section 2.2.2 on page 18, this approach exploited an
example-base which stored instances of predicate-argument relationships. One such example was
fumare-sigarette/Object, which gave the English equivalent smoke-cigarette/Object). These stored
instances were organised in analogical families. When words, for example fumare and accendere

(to light), shared a particular relationship (predicate-object) with another word (sigarette), then a
link was made between them, and they were placed in the same analogical family. Inferences were
then made for a novel predicate-argument instance, such as accendere-pipa/Object (light-pipe), if
an instance from the same analogical family was already stored in the example-base with the new
argument, such as fumare-pipa/Object. WSD was possible because a portion of the example-base
was sense tagged. Examples were linked not only because they shared common contexts, but
also because the senses of predicates and arguments were preserved. Candidate senses for a tar-
get instance were compared with regard to tagged examples of the target predicate stored in the
example-base. The rival candidate senses were ranked according to a weighted measure of the
number of contexts supporting this sense, and the semantic entropy of the ‘pivot’ terms (fumare-

sigarette/Object in the above example). The semantic entropy took into account the number of
collocate types. This allowed evidence from words with more specific sets of collocates to be
given more weight. On the Italian equivalent of SENSEVAL, ROMANSEVAL, the system performed
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at an impressive 81% precision.
The results in this section are promising. However, in the absence of sufficient training mate-

rial, supervised training is likely to be uneconomic for most NLP applications.

3.2.4 Unsupervised Statistical Methods

Unsupervised approaches do not rely on human input. The unsupervised WSD systems in the
literature use distributional similarity as a means of classifying, and disambiguating data.

Schütze (1992) proposed such an approach using the representation of semantic space that
we described on page 17 above. In this scheme, co-occurrence data from raw text produced
a vector space in N dimensions, where N was the number of context words used for mapping.
Words which appeared within a fixed window around a word were used to represent the position
of that word in semantic space. The distance was measured in characters (1000 or 1200, this was
varied for experimentation) to allow for the fact that more informative words tend to be longer. 1

Word types were represented by combining the contextual evidence from all occurrences of the
word. Word tokens were represented using the normalised average (centroid) of the vectors for
the words in the context of the occurrence. To identify senses for disambiguation, a training set
of untagged occurrences of the target word was used. Vectors representing the contexts of these
occurrences were clustered. The clusters were then manually assigned the relevant senses. WSD

involved identifying which relevant cluster (sense) was appropriate for a novel target context.
Rather than using the frequency distribution of the words within the window of the target word
directly, Schütze took the centroid of the vectors already plotted for the words within the context
window. This was then compared to the cluster centroids representing the distinct senses using the
cosine between two vectors as a measure of similarity.

An example of this approach, adapted from one in (Schütze, 1998), is given in figure 3.4. For
clarity, this example only considers two dimensions, for the context words clothes and court. In
this example, the word suit is taken to have only two meanings, a legal sense and a garment sense.
In this example, the training set of occurrences of suit results in two clusters, C1 and C2. C1 is
identified as the legal sense, and is closer to a vector for the word witness and the court dimension.
C2 represents the garment sense and is closer to the clothes axis and a vector representing laundry.
A new instance of suit, requiring disambiguation, is plotted according to the centroid vector of its
context words. The centroid vector represents the target context. The closest sense (C1 or C2)
to the newly plotted target is selected. Again, similarity is measured using the cosine between
two vectors. Note that with this method there may be more clusters than senses resulting from
the automatic clustering process and that the labelling of these clusters is performed manually.
Assigning a label to the classes is only required for WSD where sense tagging for a pre-existing
inventory is required, for example, for finding the correct translation in machine translation, or the
correct pronunciation in a text-to-speech system. Sense labelling is also required for evaluation
against a gold standard data set. The clusters representing senses could be used without labels in a
system where recourse to a pre-existing sense inventory is not required, for example in information
retrieval (Schütze & Pederson, 1995).

To obtain a realistic semantic space Schütze (1992) used thousands of context words from a
1Later, in (1998), Schütze used a window of 25 words either side of the target word.
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Figure 3.4: Schütze’s disambiguation without outside knowledge

corpus of 50 million. To overcome the performance overhead of storing and processing all this
data Schütze relied on singular value decomposition, which is a form of dimensionality reduction
that finds the principal axes in vector space. Schütze (1992) reported results for ten test words each
with a binary sense distinction, except one which had a three way distinction. There were between
100 and 500 test instances for each test word, and on average the system obtained an accuracy of
92%.

3.3 Selecting Candidate WSD Approaches

We wished to explore a few WSD techniques from the multitude available for disambiguating
nominal argument head data. The high scores of some of the systems are alluring but comparisons
between systems are hard to make because of differences in the evaluation task. This is especially
the case where only a small number of words have been tested. The actual sense distinctions taken
make a large difference to performance (Leacock, Towell, & Voorhees, 1993). For selectional
preference acquisition, there were other considerations to be made, aside from accuracy. We
needed to examine the requirements of the system in terms of the resources required. These
resources included the quantity and nature of any training data, training time, and the amount of
human-effort involved. As suggested in section 3.1, these were particularly important for the all
nouns task required here.

Since our goal was to automatically acquire preferences directly from corpus data we sought
approaches to WSD which did likewise. Approaches which directly apply external sources of
knowledge show encouraging results (Cowie et al., 1992; Wilks & Stevenson, 1998b). However,
they rely on the human endeavours that have gone into building these resources. This ties the
systems to the resources, and the disambiguation process cannot readily be tailored to reflect the
peculiarities of the corpus at hand. Furthermore, many such resources are not freely available.

The absence of human input makes unsupervised approaches rather attractive. They would
naturally go hand in hand with an approach to acquire preferences without reference to a manmade
resource. However, in chapter 2 we outlined our reasons for choosing WordNet instead. The
unsupervised approaches characterise similarity solely on the basis of distributional evidence. This
can give rise to incongruous classes. Using external knowledge to help constrain the collection
of statistics is shown to be a promising approach. When Yarowsky (1995) compared his results
with Schütze (1992) on the same four test words, Yarowsky’s unsupervised algorithm performed
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at 96.7% against Schütze’s 92.2%, even in the face of a lower baseline (55% as opposed to 65%
in Schütze’s experiments), and therefore a harder task.

Supervised approaches are problematic for our task. There is no corpus of sense tagged data
of sufficient size to estimate the parameters for all argument nouns, or even a substantial portion of
them. Since we wished to avoid both (i) the quirks of distributional data and (ii) total reliance on
manmade resources, using statistical methods with external knowledge was the obvious choice.
The preference acquisition process outlined in the previous chapter made use of a training cor-
pus (the written portion of the BNC) and WordNet. These resources were also used in our WSD

experiments.
The results reported in section 3.2.2 above indicate that selectional preferences are not a com-

plete solution to lexical ambiguity. Selectional preferences do, however, improve performance
over the random baseline. The acquisition of selectional preferences is a subgoal of this thesis. As
a consequence, exploiting these selectional preferences provided an obvious choice for reducing
the ambiguity of the input data, in an iterative approach. In this approach, selectional preferences
were first obtained on fully ambiguous data. These preferences were then used to filter erroneous
senses from the input data. The refined input data was then used for a new cycle of selectional
preference acquisition. Experiments using automatically acquired preferences for WSD experi-
mentation are reported in section 3.4.1.

Yarowsky’s ‘unsupervised’ WSD method (1995) showed particularly good results for the hand-
ful of words it was applied to. It also had the advantage that it only relied on a small amount of
handcrafted knowledge for the initial seed collocates. We explored this method for the all nouns
task, since this method avoided the need for supervised data, and only a small amount of prior
knowledge was needed.

Whilst avoiding knowledge-based and supervised approaches, we did experiment with a third
option which was related to these. This option was that of using the first sense of a word, regardless
of context. This heuristic has been used as a lower bound baseline by many researchers (Yarowsky,
1995; Schütze, 1992; Gale, Church, & Yarowsky, 1992). However, this is not appropriate for
systems which do not require tagged data, since supervised data or prior knowledge is required to
obtain a ranking of senses in the first place (Resnik, 1997).

Wilks & Stevenson (1998a) have indicated that this heuristic can produce good results to the
homograph level when used in conjunction with POS tagging. They used the ranking of senses
provided in LDOCE to define the first sense for each word form. Wilks & Stevenson used POS

information together with this heuristic on all words in a 1700 word corpus from the WSJ. They
reported results at 92% accuracy. The test data included monosemous words. Wilks & Stevenson
(1998b) went on to use this heuristic in conjunction with other sources of information from LDOCE.
This WSD system was described above in section 3.2.1 on page 55.

Gale et al. (1992) used the first sense heuristic to characterise a lower bound for evaluation.
In their experiments, they used a random sample of 97 words, which included 30 polysemous
words. When unambiguous words were included, they obtained a baseline of 93%, using the first
sense heuristic for the polysemous words. When polysemous words were used exclusively, the
first sense baseline was 81%. There was considerable variability when using this heuristic. For
some words e.g. virus (2 senses) the distribution was skewed and the first sense baseline was high,
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(98%). The predominant sense was less prominent for other words, for example, output (2 senses)
had a low baseline (51%). WSD systems, and particularly when tested on words like virus, do not
always outperform this simple heuristic (Gale et al., 1992; Rosenzweig, 1998).

This heuristic produces surprisingly good results if it is compared to a baseline selecting one
of the senses at random. For all words, a first sense heuristic will produce better results than the
random baseline if the sample size is large enough. The improvement will be larger for words
with highly skewed distributions such as virus. The first sense heuristic is straightforward to ap-
ply, which makes it a straightforward WSD candidate for experimentation on the all nouns task.
SemCor (Miller et al., 1993b) provides a portion of WordNet tagged data from which we deter-
mined the first sense of nouns occurring in both our data and the SemCor data. Indeed the senses in
WordNet were ordered according to this data, where the senses have been found in SemCor. 2 We
experimented with this WSD heuristic on the all nouns task and report our findings in section 3.4.2.

3.4 WSD Experiments

In this section we present results on lexical disambiguation for the three WSD options selected in
the last section. The three options are:

1. using selectional preferences

2. the first sense heuristic

3. Yarowsky’s ‘unsupervised’ technique

We evaluated these approaches both in terms of their performance on the all nouns task and
in terms of the overheads that they would place on the selectional preference acquisition process.
Evaluation of WSD systems is far from straightforward, as one can see by the wide variety of ways
of comparing systems in SENSEVAL (Rosenzweig, 1998). For evaluation, we used the data in
SemCor. All words are labelled in this corpus. The DSO corpus also has WordNet labels, but in
this corpus only a selected sample of words are labelled. SemCor is freely available and for this
reason it has been used for evaluation by many other researchers (Ribas, 1995a; Agirre & Rigau,
1996; Resnik, 1997). Also, Wilks & Stevenson (1998b) map LDOCE sense tags into WordNet
senses in order to evaluate with SemCor.

For evaluation of the first sense heuristic, our training and test data were equivalent since we
obtained the sense ranking to identify the first sense from SemCor. On account of this overlap, we
also tested the heuristic on small manually tagged samples of randomly collected data from the
Lancaster-Oslo/Bergen (LOB) (Johnansson, Leech, & Goodluck, 1978) and WSJ corpus.

3.4.1 WSD Using Preferences

The method of acquiring selectional preferences was described in the previous chapter. To recap,
the acquired preferences, for a specific verb and slot, were acquired as a set of disjoint classes
across WordNet covering all leaves. All word senses were attached at leaves in our modified ver-
sion of WordNet. The preferences were found by populating the hierarchy with frequencies from
the corpus data. MDL was used to obtain a set of classes at an appropriate level of generalisation.

2Otherwise the ordering is random. For this reason the SemCor data was required, and the ranking within WordNet
could not be relied upon.



Chapter 3. Word Sense Disambiguation for Selectional Preference Acquisition 64

root

chicken

object

substance

food

meat

bird

chicken

person

wimp

life_form
organism

chicken
poulet

( destination is a hypernym
of source)

indirect hypernym links

hypernym links

75

3

Figure 3.5: Direct object slot eat

Using preferences for disambiguation was straightforward. The classes on the cut with can-
didate senses underneath were compared. The sense, or senses, selected were those under the
class with the highest preference score. For example, the sense of chicken under food would have
been preferred over the senses under life form, when occurring as the direct object of eat, given
the selectional preferences in figure 3.5. The disambiguation process acted as a filter, removing
senses only where they fell under different classes on the cut. Disambiguation could be quite
coarse grained depending on the specificity of the cut and the semantic proximity of the senses.
For example both classes containing curry, (curry powder and curry dish) lie under food. Both
would have been selected with this method given the tuple � eat � direct ob ject � curry � .

ATCMs were used for WSD evaluation. A threshold was used with the association score. Dis-
ambiguation was only performed if at least one of the classes had an association score above the
threshold. The threshold was used because it is hard to be sure of a negative correlation using
scores based on mutual information (Church et al., 1991). Filtering senses, rather than return-
ing one solution, did not pose a problem for selectional preference acquisition. As we saw in
section 3.1.1, partial disambiguation was acceptable. If more than one sense was returned the
frequency count was simply split between these senses.

Although our selectional preference acquisition system could readily handle cases where more
than one sense was returned from the WSD component, we had to allow for this possibility in our
evaluation. The gold standard (SemCor) which we used for evaluation has, for the large part,
one sense label to each lemma. Where the WSD system returned multiple labels, we scored the
target lemma correct if at least one of the assigned senses was correct. We permitted this because
erroneous senses were at least close, in WordNet terms, to the correct sense. This was because the
system only selected multiple senses which were hyponyms of the same superordinate class on the
cut with the highest preference score, as in the � eat � direct ob ject � curry � example above.

It was easier to score highly under this scheme since we were effectively allowing the system
more guesses. We were increasing the chance of selecting the correct sense for each item by the
number of senses left after WSD. To reflect this we provided a new baseline since the random base-
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line was too low in these cases. The random baseline (RBL) is given in equation 3.1 on page 50.
An adapted baseline - the ‘multiple choice random baseline’ (MCBL) is given in equation 3.8. The
summation was over the sample of (n) test items that we disambiguated. The random 1�

sensesi
� for

each candidate (i) was multiplied by the number of senses selected by our selectional preferences
( � choicesi � ).

MCBL �
n

∑
i � 1

�
choicesi

�
�
sensesi

�

n
� 100 (3.8)

Since n was the number of items for which disambiguation was attempted, this was a precision
baseline. We also calculated recall in our experiments. However, this can only be compared to the
standard random recall. We could not calculate a multiple choice recall since for undisambiguated
items we could not indicate additional weight for multiple sense assignments because the number
of these (and therefore the granularity) were determined by the disambiguation process.

Resnik (1997) and Ribas (1995a) both made a random choice between the senses remaining
after selectional preference disambiguation. We avoided this since humans often have difficulty
choosing between senses (Kilgarriff, 1993). We prefer to think of the process as a filtering of
unlikely senses. The SENSEVAL competition permitted systems to provide a probability distribu-
tion over the candidate senses of a test item. Systems that did not output a probability distribution
used the uniform distribution over multiple assignments. Systems that identified only one sense
ascribed all the probability to a single solution.

Our method of WSD permitted the selection of multiple senses. More than one choice was
given only in cases where the senses fell under a common superordinate. Unfortunately, MCBL

did not indicate the semantic proximity of the senses remaining after disambiguation. It was
therefore rather high and punitive. A baseline between RBL and MCBL would have been more
appropriate. Resnik & Yarowsky (1997) suggested incorporating a measure of semantic similarity
in WSD evaluation to allow for multiple labels.

In addition to allowing multiple assignments, SENSEVAL compared systems on three levels
of granularity (fine, coarse and mixed grain, as described above). This was an intuitive way of
incorporating a notion of semantic similarity into the evaluation. Unfortunately, it only works
with sense inventories for which a breakdown of senses into subsenses is provided. We did not do
this for our SemCor evaluation since levels of granularity are less obvious in WordNet.

Evaluation was performed using the preferences collected from lexicon A for a sample of 30
verbs. These verbs were selected to exemplify a range of SCFs and were not chosen on the basis
of their selectional properties. The verbs are listed below:

add, agree, allow, ask, begin, believe, bring, build, call, cause, change, charge, choose, consider,

cut, decide, end, establish, expect, feel, find, fix, give, help, like, move, produce, provide, seem,

swing

ATCMs were obtained for object, subject and PP slots. Disambiguation was performed on all
nominal argument heads in these relationships. The results are provided in table 3.1. The results
shown are with a threshold of 1 placed on the association scores, except in the case of ‘obj 2’,
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Table 3.1: SemCor evaluation

slot recall recall RBL precision MCBL RBL

obj 35 27 48 43 28
obj 2 24 27 46 37 25
subj 35 27 51 47 27
PP 9 25 27 40 26

where a threshold of 2 was taken. The ‘recall RBL’ column displayed the random baseline for
recall.

The selectional preferences performed above both baselines in all slots except the PP slot.
Performance at all slots was not significantly better than the rather stringent MCBL. 3 The results
were highly significant when compared to the random baseline. Performance on the PP slot was
affected by sparse data. The slot was less frequent than subject or object slots, even before we
considered the specific preposition involved. The data available was substantially reduced when
it was considered with respect to a particular preposition. Another possible reason for the poor
performance at the PP slot might be that the head nouns in PPs are less constrained by the verb
than the argument heads in other slots are.

Comparing the results with other researchers is not straightforward because of differences
in the test data. These differences are indicated to some extent by differences in the random
baselines. Ribas attained a score of 52% for verbs chosen randomly in the SemCor data (1995a).
The random baseline was 51%. Monosemous words were included in the test data and so 52%
is perhaps disappointing. The small size of the training data (the SemCor corpus) undoubtedly
affected Ribas’s results.

Resnik obtained 44% accuracy for the object slot, and 41% for the subject slot (1997). He did
not perform the experiment with the PP slot. Where the preferences did not distinguish between
senses, a random selection from the remaining senses was used. The random choice baseline was
29% for both slots. Resnik used data for 100 of the strongest selecting verbs, where selectional
strength is defined as in equation 2.12 on page 27 in chapter 2.

In our SemCor experiment described above we used all verbs for which preferences were
obtained. Using strongly selecting verbs would have produced better results since verbs with
weak preferences are unlikely to be as good at distinguishing senses. In a preliminary experiment,
we evaluated preference disambiguation on a manually tagged sample of the direct objects of eat

from lexicon C (created from 1.8 million words of parsed text from the BNC). Only polysemous
words were used. This provided a recall of 62% and precision of 93% (compared to MCBL of
55%). Performance was high because eat selects strongly for its direct objects.

Evaluation using the SENSEVAL test suite permitted comparison with other systems (Rosen-
zweig, 1998). The preferences we used were ATCMs, with the first sense heuristic for WSD of the
input data. Our results varied substantially from 0% to 100% precision depending on the target
word. Many errors were accounted for by factors other than the quality of the selectional prefer-

3The significance was tested using the χ2 test (Siegel & Castellan, 1988)).
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ences. These included multi-word identification errors, some of which were readily correctable,
POS tagging errors, parser errors and Hector–WordNet mapping errors. Performance for nouns
on the coarse grained task was 69.4% precision with 20% recall. This compared well with the
OTTOWA system which also used only preferences. This system obtained 70.6% precision and 8%
recall on this task.

We agree with Resnik (1997) that selectional preferences can only provide part of a solution
to WSD. However, in our experiments they did outperform the random baseline and they provide
a fully automatic approach without the need for sense tagged material. We would not recommend
using them alone in applications where accuracy is critical. In section 3.6.1, we see whether they
can improve selectional preference acquisition, where disambiguated data is used collectively.

3.4.2 Using the First Sense Heuristic

In this section we describe our evaluation of the first sense heuristic for diambiguating WordNet
senses. The first sense of a given lemma was determined using the frequency information available
from SemCor (Miller et al., 1993a). The success of this heuristic depends heavily on the frequency
distribution over the senses (Gale et al., 1992). We therefore applied constraints on the application
of this heuristic to improve precision. Where the constraints were not met the ambiguity was
left unresolved and we reverted to the uniform distribution over senses for selectional preference
acquisition.

Initially we experimented with two criteria for application of the heuristic.

1. FREQ - a threshold on the frequency of the first sense

2. RATIO - a threshold ratio between the frequency of the first sense and that of the next most
frequent sense.

The first of these criteria ensured that there was a reasonable quantity of evidence collected
for the first sense. The second ensured that the heuristic was applied only where the distribution
over senses was sufficiently skewed.

Initially FREQ was set at 5 and RATIO at 2. The heuristic with these parameter settings was
evaluated against SemCor. This is the corpus from which the frequency data was obtained so one
would expect the results to be higher than where the training and test data are disjoint. The only
other corpus tagged with WordNet senses is the DSO corpus (Ng & Lee, 1996). However, this is
not free of charge, unlike SemCor which is freely available. To evaluate the heuristic on unseen
data, we manually tagged two small samples from the LOB (179 nouns) and the WSJ (191 nouns).
These samples were selected at random. The results are shown in table 3.2, along with the results
from SemCor (Brown corpus). The SemCor results show performance on all nouns in the corpus.

Performance was understandably higher when scored against the same data from which the
frequency ranking for the heuristic was taken. In all cases the heuristic outperformed the random
recall (recall RBL). This was especially the case since we ignored cases that do not meet our
constraints, as indicated by separate figures for precision. We included monosemous words for
these experiments for ease of comparison with (Wilks & Stevenson, 1998a). They achieved an
accuracy of 92% using the sense ranking provided in LDOCE. This figure was higher than our
precision figures because Wilks & Stevenson disambiguated to the LDOCE homograph level, a
considerably easier task.
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Table 3.2: Threshold 5 ratio 2

DATA (recall) RBL recall precision
Brown 45 61 86
LOB 35 44 69
WSJ 40 41 68

Table 3.3: Variation of thresholds on the LOB data

FREQ RATIO IDN RECALL PRECISION

5 2 N 44 69
3 2 N 47 69
1 2 N 49 67
3 1.5 N 50 67
3 3 N 39 76
3 2 Y 45 71

Further experimentation was performed using the LOB sample to find a good setting for the
FREQ and RATIO thresholds. Additionally, a third boolean constraint was added: nouns identified
on the SemCor project as being difficult for humans to tag were ignored. We use the term IDN

(ignore difficult nouns) for this constraint. The frequency distribution estimated from the ‘gold
standard’ corpus was likely to be flawed for these nouns because of the difficulties experienced by
the human taggers. For this reason these nouns were not targeted for automatic tagging.

The results from varying the parameters are shown in table 3.3. The parameter settings of 3
for FREQ, 2 for RATIO and IDN were taken forward for selectional preference acquisition. These
values were felt to make the best compromise between recall and precision from informal inspec-
tion. There is further scope for playing with these parameters but their effect on performance is
not considerable. We were ultimately concerned with the effect of this WSD method on selec-
tional preference acquisition. Further experimentation with these parameters was therefore only
warranted if the method improved the selectional preferences acquired.

3.4.3 Yarowsky’s Iterative Approach

We also investigated Yarowksy’s (1995) unsupervised algorithm described in section 3.2. This
has a distinct advantage over supervised algorithms in that it does not rely on manually tagged
data. A little prior knowledge is required to provide seed collocations for initial labelling of a
small portion of the training data. In our implementation, WordNet was used to generate the seed
collocations to provide the initial tagged portion of training data. This was required for learning a
first approximation to the decision list of ordered collocations.

Seed collocations were automatically obtained using the WordNet hyponym hierarchy. Seeds
for a target noun were obtained in sets. One set was obtained for each class (sense) that the target
noun belonged to. The seeds in a set for a particular class were taken from the set of synonyms at:
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Figure 3.6: Seed collocates for plant

� the class itself
� direct parent classes
� sister classes
� child classes

Synonyms that featured as seeds in more than one set were removed from all sets for this target.
As an example, some of the seeds for the two main senses of the target word plant are shown
in figure 3.6. If the target noun occurred within multi-word expressions, then only words other
than the target word were used as seeds. There are several examples of this in the diagram. For
example, garden plant produces the seed garden for the flora sense, and disposal plant produces
the seed disposal for the industrial sense.

Training data was collected from the written portion of the BNC, 90 million words approxi-
mately. This was unfortunately much smaller than Yarowsky’s 460 million word corpus. In our
experiments, the only type of collocation used is one within a fixed distance of words (10). This
bag-of-words approach was simpler than using syntactic relationships. Performance was likely to
be reduced, but the initial overhead of parsing the entire data set was avoided. we used a con-
stant (0.1) in situations where a particular sense did not occur with a specified collocation, i.e.
freq � senseA � collocationX � . Our algorithm stopped when more than 95% of the training data was
tagged.

Our simplified implementation was initially evaluated on plant, which is the target given as
an exemplar in Yarowsky’s paper. We manually labelled 710 citations from the BNC with the
appropriate WordNet senses. Only two WordNet senses were evident in the data (flora and indus-

trial). On initial experimentation, it was evident that collocations involving senses with a higher
frequency quickly overwhelmed the decision list, which was ordered by the log-likelihood ratio
measure given in equation 3.7. This lead to a bias towards the predominant sense. In Yarowsky’s
example, sense A (flora) and B (industrial) of plant both had similar frequencies in the data la-
belled with the seeds. This would not be typical of corpus data and certainly was not the case
for the data used here. Yarowsky did achieve satisfactory results with words having a clear pre-
dominant sense. Nevertheless, the log-likelihood ratio measure given in equation 3.7 favours the
predominant sense since it is likely to have a higher conditional probability with respect to the col-
location simply because it occurs more regardless of the context. To overcome this, the log of the
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Table 3.4: Unsupervised WSD for plant

SCORE RECALL PRECISION

initial with seeds 16% 93%
log-likelihood 71% 72%
Association ratio 76% 78%

ratio of the association scores (see equation 3.9 and 3.10), rather than the conditional probabilities
was investigated as a measure for ordering the decision list.

log of the ratio of association scores � log A � targetsense � collocationi �
A � othersenses � collocationi � (3.9)

Where A � sense � collocationi � � prob � sense � collocationi �
prob � sense � (3.10)

3.9 can be simply rewritten for estimation as:-

log freq � targetsense � collocationi �
freq � othersenses � collocationi �

� freq � othersenses �
freq � targetsense � (3.11)

Where freq indicates a frequency count.

The results are displayed in table 3.4. Using Yarowsky’s log-likelihood ratio as the score
for ordering the decision list, the algorithm is biased towards the more frequent sense. Recall
is 71% and precision 72% when the stopping condition is met. The ratio of association scores
compensates for the relative frequencies of the senses. When the stopping condition is met in this
case, the recall is 76% and precision is 78%.

In table 3.4 we also show the recall and precision obtained using only the seed collocations.
This indicates how accurate our automatically generated seeds were. The seeds were only expected
to cover a small portion of the training data, this explains their low recall value. However, the seeds
for plant gave a precision of 93%. The automatically generated seeds were, on this occasion, very
informative.

The association score ratio was better at ordering decision lists. The results reported here
are far from the 95% accuracy that Yarowsky reported. However, in these experiments many
simplifications were made which degraded performance. Better results can be expected with more
training data, a more sophisticated method of smoothing, and parsing of the data to allow a wider
variety of collocations. Despite our simplifications the results for plant were encouraging when
compared to the random baseline of 50% (precision and recall).

Unfortunately, WSD on randomly selected targets involving finer word sense distinctions was
not as successful. In a second experiment, training was performed for 391 polysemous mid-
frequency nouns. The nouns were selected at random, except that the nouns identified on the
SemCor project as being hard to tag by humans were excluded. Training was again performed
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using the BNC data. We used the SemCor files of the Brown corpus for evaluation. The results
were disappointing. We obtained 29% for both recall and precision, which was only just better than
the random baseline (25%). An important factor was the poor quality of the initial seeds. When
the initial seeds were used to label the test corpus, recall was 0.1% and precision was 18%. It is
likely that performance could be improved for the all nouns task given more training data, more
sophisticated smoothing, preprocessing to identify syntactically determined collocations and some
refinement of the process to obtain seed collocations. Performance is unlikely to be at the 95%
level with nouns involving less clear cut sense distinctions than the binary split for plant.

3.5 Choosing WSD Options

3.5.1 Preferences

Preferences are not a panacea for WSD. They may be useful, but complementary sources of knowl-
edge are needed for accurate WSD (Wilks & Stevenson, 1998b). They did, however, present us
with a method for disambiguation which outperformed random when applied to argument head
data. We hoped that this would give improved results for selectional preference acquisition, com-
pared to using the uniform distribution across all senses for each argument head. Since we had a
method for producing the preferences this was an obvious choice for us. It did not require addi-
tional training, other than that which was necessary for selectional preference acquisition in the
first place. The preferences were first approximated from ambiguous data and then acquired again
from the partially disambiguated training data. We used a ‘second pass’ approach, with two pref-
erence acquisition cycles. The resultant preferences were compared to those produced using the
uniform distribution over senses of each target before attempting further iterations. Disambigua-
tion with selectional preferences required training for the verbs, rather than for the argument heads
themselves.

3.5.2 The First Sense Heuristic

The first sense heuristic was also taken forward for preference acquisition. This was not because
it is a good method for WSD; it clearly is not since it disregards context. Its chief advantage is in
its ease of application. The training requirement was already met since we used the sense ranking
provided by SemCor. This small corpus (200,000 words) was felt to be sufficient since we only had
to estimate a ranking of the senses for each lemma. Additionally, we used our constraints (FREQ,
RATIO and IDN) to apply the heuristic only in appropriate situations. Accuracy was not at the level
that one would expect from state of the art WSD systems. However, accuracy was at a reasonable
level, given that this heuristic had been evaluated on the all nouns task. Many of the state of the art
systems have only been evaluated on a small sample of words. The accuracy level was not critical
to us since the disambiguated argument head data was used collectively for selectional preference
acquisition. The heuristic was intended to concentrate the data in the correct areas of preference,
compared with use of the uniform distribution. It was hoped that the preference ‘signal’ would be
stronger provided that the bulk of the data was assigned the correct sense. The erroneous senses
would be scattered across WordNet, except in cases of highly frequent argument heads (Ribas,
1995a).
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Table 3.5: Estimating training time for the all nouns task

freq threshold noun types polysemous noun types training time (days)

0 104,912 22,978 239
10 18,424 7,071 74
100 5,593 3,684 38

3.5.3 Yarowsky’s Algorithm

Yarowsky’s unsupervised method undoubtedly worked well for some target words. It had a major
advantage in that it did not rely on supervised material or extensive external knowledge. The
algorithm, whilst initially taking knowledge derived from humans, settled on a decision list of
collocates found statistically in the training data.

The poor performance of the algorithm for the 391 randomly selected nouns demonstrated
that the nature of the sense distinctions, and the quality of the initial seed collocations, radically
affected performance. Even if accuracy could be improved with refinements to the algorithm,
syntactic processing of the training data and a larger training corpus, the time taken for training
remained an issue. This was an important consideration for the all nouns task, depending on the
size of the target corpus. We estimated training time figures for the nouns in Lexicon A from the
training time required for plant. 4 Our algorithm took 15 minutes on a SUN Ultra before 95% of
the data was tagged.

Table 3.5 displays the training times we estimated for the nouns types in the corpus data used
to build lexicon A. There are approximately 22,978 polysemous (according to WordNet) noun
types. We estimated that this would take nearly eight months of training. To reduce this, one
option was to concentrate WSD on the most frequent items, since these cover a larger quantity of
the data according to Zipf’s law. The fourth column of table 3.5 shows the training time estimate
for the nouns whose frequency exceeds the threshold specified in the first column. The nouns
with a frequency more than 100 would require more than five weeks of training. 94% of the
argument data could potentially be covered if we performed disambiguation with only these nouns.
A significant problem with concentrating WSD on the highly frequent nouns is that they tend
to be more polysemous and therefore harder targets for disambiguation. A more sophisticated
implementation of the algorithm and a substantial increase in the quantity of training data would
be required to handle these nouns. A larger training corpus should improve accuracy but would
bring additional costs in terms of training time.

Yarowsky’s approach was not taken forward for tagging the nominal argument heads. This was
because of the poor performance on the 391 randomly selected nouns and the substantial training
requirements. This approach worked well with coarser sense inventories and may indeed be useful
for other WSD applications, provided that good sources of seed collocations can be found.

In the next section we look at the effects on the TCMs of WSD of the argument head data using
the selectional preferences and the first sense heuristic.

4We acknowledge that the training time will vary depending on the actual word.
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3.6 Preference Acquisition From Partially Disambiguated Data

In this section, we contrast the TCMs with disambiguation of the argument head data using (i)
selectional preferences and (ii) the first sense heuristic. Formal evaluation is deferred until chapter
4 but we make some informal comparisons of the cuts produced with and without these WSD

strategies.
Lexical disambiguation should have the effect of reducing noise from erroneous senses. If

no disambiguation is performed, the frequency credits are divided evenly between all senses of
each lemma, correct and incorrect. Because many lemmas are considered together, the credit will
tend to concentrate in areas of preference. However, there will be some noise in other areas from
parser errors and semantically ‘odd’ tuples as well as from erroneous senses. If disambiguation
is performed, and if this is reasonably accurate, then the level of noise should be reduced. The
frequency credit will increase in the areas of preference and decrease in other areas. The argument
head data translated to WordNet senses will be more homogeneous, that is it will be more concen-
trated in areas of preference. The TCMs will consequently display more marked preferences than
TCMs acquired without WSD. On the other hand, if the disambiguation is inaccurate, the frequency
counts will be more widely dispersed than without disambiguation. This is on the assumption that
the erroneous senses (those not genuinely associated with the verb) from different lemmas are
independent.

For example, in an imaginary corpus, suppose that the lemmas room, house, wall are observed
at the direct object slot of decorate. The different senses of the respective lemmas (indicated by
the lemma and a suffix for the sense number) fall under the WordNet roots shown in figure 3.7. If
no disambiguation occurs, the frequency count at the respective roots is as shown in the diagram in
the row labelled NO WSD. The senses selected by a poor WSD algorithm are shown within dashed
lines. This algorithm incorrectly labels the majority of argument heads and spreads the frequency
counts from all lemmas throughout the hierarchy. The frequency count at the roots is shown in
the row labelled Bad WSD. The use of the first sense heuristic selects the senses encircled with
the solid line. The frequency distribution at the roots is labelled FirstS in the diagram. The first
senses of these words all congregate under the same entity root in this case. This gives us a strong
indication of the preference for decorate. In a real corpus we would have far more data. Some
of the data would be monosemous. Some of the polysemous words would be like wall, where all
senses are in the same vicinity of our semantic classification. Other polysemous words will have
senses in different areas. Disambiguation will have most effect for these words with senses in
different areas.

Verbs differ in their selectional properties. These differences can be seen in the profile across
the TCMs in terms of:

1. the magnitude of the preference score

2. the specificity of the preferences

3. the dispersal of the preferences throughout the hierarchy

On the whole, WSD should increase preference strength in the appropriate regions. For some
verbs there will also be an increase in the specificity of the TCMs. More specific cuts are typical in
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Figure 3.7: WSD and estimation of frequency distributions

regions with a large differential between the frequencies of subclasses. The frequency credit needs
to be sufficiently high for this to happen. Additional frequency credit makes it more cost effective
for MDL to take a deeper cut. The additional cost of a more detailed model is compensated for by
the reduced data description length.

In the following sections, the effect of WSD on the TCMs is demonstrated in a number of
ways. In section 3.6.1 we illustrate the differences by displaying portions of some TCMs with and
without disambiguation. These illustrations demonstrate the effects of WSD qualitatively. Formal
evaluation is deferred until the next chapter, but we also make some quantitative comparisons in
this chapter. In section 3.6.2 we show the difference WSD made to the number of cuts at the root,
showing the effect WSD had on the number of verbs for which TCMs were obtained below the
dummy root. This provides us with a quantitative comparison in terms of the specificity of the
TCMs.

The degree to which the argument head data was more homogeneous (more concentrated in
areas of preference) with WSD is demonstrated in section 3.6.3. This is done by displaying some
conditional probability (p � c � v � ) distributions across a cut at the WordNet roots 5 for a couple of
verbs with and without WSD.

There is a further way of quantifying the degree to which the disambiguation reduces noise
and increases the homogeneity of the argument head data. This is inherent in our use of MDL to
obtain the TCMs. The cost of the model, given the data, is used to guide the selection of the best
model. An increase in homogeneity typically decreases the cost of a model. When using the same
data, and the same method of calculating the relative cost (i.e. the method for ATCM, PTCM or
LLRTCM), we saw if the disambiguation decreased the cost associated with the best model found.
We make this comparison in section 3.6.4.

The disambiguation options in all sections below are indicated by NOWSD (no disambigua-
tion), SPass (using the selectional preferences), FirstS (using the first sense heuristic), and COMB

(a combination of the first sense heuristic and the preferences). For the combined option the first
5These are the eleven top level classes in the WordNet noun hyponym hierarchy
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sense heuristic was used and where this could not be used the selectional preferences were applied.
The results below are reported on the acquisition of preferences for verbs found within the

random sample of 500 sentences mentioned first on page 36. The data used was obtained from
lexicon A.

3.6.1 TCMs

This section provides a qualitative description of the effect of WSD on the TCMs. We illustrate the
differences by showing portions of the cut models for a few verbs. This demonstrates how well
the preferences accord with intuition. We illustrate the differences using:

1. produce - a mid-frequency verb with preferences in a number of areas.

2. melt - a low frequency verb with strong preferences in one area.

3. slice - a low frequency verb where, without disambiguation, MDL selected a TCM at the root.

Figure 3.8 shows the ATCMs for the direct object slot of produce. SPass and NOWSD both
cut the hierarchy at the object class. In this case, SPass weakened the preference score because
stronger preferences elsewhere on the cut attracted the frequencies of ambiguous nouns. For ex-
ample, target had five senses at hyponyms of the classes location, lifeform, object, psychological

feature and relation. There was a strong preference (4.2) for produce at relation. This preference
disambiguated the noun target occurring as direct object to produce, and removed the frequency
credit under object.

FirstS tended to give more detailed cuts compared with SPass. This was because FirstS dis-
ambiguation resulted in one specific sense label for a given argument head. In the case of produce,
FirstS provided a model which distinguished a stronger preference for product (book, software

etc...) than for construction (house, office etc...). However, when we applied a combination of
FirstS and SPass the resulting cut fell beneath the product class, we would perhaps wish for a
higher level of generalisation than this.

In contrast melt had a lower frequency (36 compared to 2223 for produce). It had a prominent
preference in the vicinity of the substance class. The ATCMs for the verb melt involved the same
classes, by and large, regardless of the different WSD options. There were, however, differences
in the association scores. Figure 3.9 displays part of the ATCM for melt. This portion was at the
same classes for all WSD options. The association scores were different and are listed separately
in table 3.6.

From this table we can see that all options provided a strong preference for the class substance.
SPass further increased the homogeneity of the data when used on a verb with strong selectional
properties. It typically provided the highest preference scores with strongly selecting verbs. FirstS
helped where preferences were less strong, or where preferences were spread in different parts of
the hierarchy, as with the produce example given above. Formal evaluation of these WSD methods
are required over a large set of verbs before we make any judgement over the relative merits of
these WSD options.
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Figure 3.8: Models for produce object slot using different WSD strategies

FirstS had advantages over SPass in cases where a cut at the root is obtained for the NOWSD

option. In these cases, the SPass technique could not be applied to the verb specific data. 6 Slice

was one case where FirstS enabled reasonable preferences to be obtained. Figure 3.10 illustrates
the cut model obtained for both FirstS and COMB. The model accords with intuition. The pref-
erence for location is less intuitive, but is readily explained by the arguments top, middle and
place.

Although erroneous senses from different lemmas should be spread in different areas, erro-
neous senses from multiple occurrences of the same lemma will accumulate. Ribas (1995a) noted
the accumulation of erroneous senses from lemmas which occur frequently with a verb. If a lemma
is frequent with respect to a verb and slot, then disambiguation will concentrate this frequency even
more. This will be for the better or worse, depending on the accuracy of the WSD. Frequent col-
locates were observed in our data e.g. open door, slam door. Where strong collocations occurred,
cuts at the leaf classes were not unusual. This happened to a greater extent with FirstS than for
SPass, since SPass at least took the verbal context into account. On the whole, FirstS correctly
identified the sense of the lemma, as it did in slam door. Things did not always go well. For
example, FirstS assigned part, in play part, to the portion class. Without FirstS, i.e. with either
NOWSD or SPass, the frequency credit was split and so leaves were less common on the TCMs.

In this section, we used ATCMs at the direct object slot to demonstrate the effect of WSD.
However, the effect also held for the other models (LLRTCMs and PTCMs) and slots (subject and
PP). WSD tended to increase the specificity of TCMs, for all slots and model types. The speci-
ficity of different model types varied as we showed in the last chapter. Consequently, changes in
specificity brought about by WSD for a particular verb did not always hold across different model

6For the LLRTCMs and ATCMs part of the prior data was disambiguated. These were the bits that co-occurred with
verbs for which preferences were evident.
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Table 3.6: Melt direct object preference scores for WSD options

Abstraction Substance Artifact Location
NOWSD 0.9 36.4 1.3 1.6
SPass 0.2 54.3 0 5.2
FirstS 1.0 38.6 1.3 0.3
COMB 0.4 54.1 0.5 0

types. PTCMs particularly tended to be less specific than ATCMs. Preference models at the PP slot
suffered more from sparse data than subject and direct object slots. This was because the slot is
less prevalent to start with, and also because the noun lemmas were considered with respect to the
preposition as well as the verb. In the following section we use the percentage of root cuts across
our sample of verbs to demonstrate the general tendency for increased specificity with WSD. We
do this for the three different slots, model types and WSD options.

3.6.2 Percentage of Root Cuts

In this section, we list the percentage of cuts at the dummy root for the different slots, model types
and WSD options. A cut at the dummy root indicated that any preferences were not large enough
for detection with the MDL technique. The percentage of (dummy) root cuts are displayed for the
object slot in table 3.7, for the subject slot in 3.8 and for the PP slot in 3.9. In each of these tables
the model types and WSD options are given.

FirstS reduced the number of root cuts observed for all slots and all model types. SPass did not
do much to alleviate the problem of root cuts. This was because there were no preferences available
for WSD from the first acquisition cycle for disambiguation of the argument head data. For ATCMs
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Table 3.7: Percentage of root cuts with different WSD options, direct object

Model NOWSD SPass FirstS COMB

PTCMs 36 36 (08) 31 31 (16)
ATCMs 26 22 18 17
LLRTCMs 16 16 11 11

Table 3.8: Percentage of root cuts with different WSD options, subject

Model NOWSD SPass FirstS COMB

PTCMs 41 41 (13) 39 39 (15)
ATCMs 22 20 20 20
LLRTCMs 28 27 21 21

Table 3.9: Percentage of root cuts with different WSD options, PP

Model NOWSD SPass FirstS COMB

PTCMs 76 76 (21) 65 65 (40)
ATCMs 67 65 48 51
LLRTCMs 59 56 39 39
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and LLRTCMs, SPass did improve matters a little since the preferences that were obtained were
applied to the data irrespective of the verb. This prior distribution was used in the preference
scores and description lengths of both ATCMs and LLRTCMs.

Model Type

PTCMs were typically more general than LLRTCMs and ATCMs. There were many more root cuts
for these models, regardless of slot. FirstS reduced the number of root cuts, however, a large
proportion of verbs were left with root cuts even with FirstS disambiguation. For this reason, we
experimented with a cut at the eleven root classes of WordNet (a ‘WordNet Root Cut’) in cases
where MDL selected a cut at the (dummy) root above this. This is shown in figure 3.11, which
illustrates the PTCMs obtained for the direct object slot of scan. The PTCM at A was obtained by
the standard NOWSD setting. When this was used for SPass there was no improvement because
there were no preferences to disambiguate the argument heads. When the WordNet root cut was
used, we obtained a PTCM at B, with probabilities along this 7 from the conditional distribution
p � class � scan � . When the PTCM at B was used for SPass, a PTCM at C was obtained. We obtained
dramatic reductions in the number of root cuts output from SPass when we used the WordNet root
cut for verbs which had a cut at the dummy root. We only experimented using the WordNet roots,
instead of the dummy root, for the PTCMs. The percentage of dummy root cuts obtained using
WordNet roots for the PTCMs are displayed in the tables in brackets. The verbs where a root cut
was obtained selected less strongly for their arguments. It may be that dummy root cuts are better
for NLP applications in these difficult cases by indicating where preferences are too weak to be
reliable.

7The probabilities are not shown to the sake of clarity.
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Slot

The effect of WSD was the same regardless of slot. PPs were particularly prone to root cuts because
of the sparse data problem. Data was collected not only with respect to the verb but also to the
preposition. As Wagner (2000) has pointed out, the quantity of data is important when using MDL.
If � S � is the sample size then, given Li & Abe’s formulations, the model description length has
complexity O(log � S � ) whilst the data description length has complexity O( � S � ). With increasing
sample size the data description length increases more rapidly than the model description length.
The model description length is more expensive in situations where less data is available. In these
cases, there is a tendency for a more general model, and so cuts at the root are more common.

WSD helped considerably in cases of sparse data. Without WSD, 67% of our ATCMs at PPs
were cut at the root. With FirstS this proportion was reduced to 48%.

3.6.3 Probability Distributions

The decrease in the percentage of root cuts demonstrates the increase in specificity provided by
lexical disambiguation, at least for FirstS. We compared the actual probability distributions in
WordNet to see the effect of the WSD options on the homogeneity of the data. We did this using
the probability distribution at the root classes in WordNet for the direct objects of a couple of verbs
(produce and melt) used as examples in section 3.6.1. The selectional properties of these verbs
differed somewhat. Melt had a strong selection for classes under the substance class, whereas
produce had more diverse preferences.

The frequency distributions are shown for all WSD options. SPass was performed using the
ATCMs. 8

8Note that the probability distribution across the roots do not sum to 1 because of errors in rounding, and any overlap
of classes caused by multiple parentage.
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Table 3.10: Probabilities at root classes - melt direct object

Root (synonyms at) NOWSD SPass FirstS COMB

possession 0.003 0 0 0
group grouping 0 0 0 0
abstraction 0.1 0.02 0.1 0.05
state 0.003 0 0 0
psychological feature 0.04 0.01 0.03 0.01
event 0 0 0 0
location 0.02 0.06 0.01 0
shape form 0.01 0 0.01 0
act human action 0.01 0 0 0
phenomenon 0.01 0 0.01 0
entity 0.8 0.92 0.8 0.94

SPass worked well with verbs that select strongly for their objects. For these verbs, ambiguities
were resolved in favour of senses which fell in the predominant semantic area. For melt, SPass
provided a larger increase in probability at the entity class than FirstS, although both produced
increases compared to NOWSD. COMB produced the largest increase at this class. The probability
distribution conditioned on produce also showed a probability increase in areas of preference after
disambiguation with SPass. This can be seen at the entity and abstraction classes. SPass, by its
very nature, always increased the concentration of frequency in areas of preference.

3.6.4 Description Lengths

In this subsection, the description lengths (or relative costs) of the TCMs using the different WSD

options are compared. As a consequence of using MDL, for each TCM we had a final description
length associated with the TCM. This was minimised in our search for the optimal model. The
optimal model, according to MDL, is the one which makes the best compromise between being
succinct, and reflecting the data well.

In a pure MDL approach, the cost of a model is the actual description length, measured in
bits, of both the model and the data when encoded in the model. As described in the previous
chapter, a PTCM description length is clearly related to the number of bits required since we use
∑class � cut log p � class � for the description length. The description length for an ATCM is rather
convoluted as we use the log of the association score in the description length, having envisaged
the ATCM as a by-product of a process to produce a TCM for the conditional distribution. The
description length we use for a LLRTCM is not clearly related to the number of bits required for
description since the LLR statistic is used as a heuristic, in place of a clear description length. The
costs used in the acquisition process for ATCMs and LLRTCMs do not equate to the actual number
of bits required for encoding the data in our model. They do, however, provide relative costs which
are sufficient for the purpose of ranking models. Using the same description length calculations
(i.e. the same model type) on the same data (i.e. for the same verb), we compared not only the
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Table 3.11: Probabilities at root classes - produce direct object

Root (synonyms at) NOWSD SPass FirstS COMB

possession 0.02 0.01 0.02 0.001
group grouping 0.04 0.03 0.04 0.04
abstraction 0.3 0.4 0.2 0.3
state 0.04 0.04 0.04 0.03
psychological feature 0.11 0.07 0.11 0.08
event 0.04 0.02 0.03 0.01
location 0.02 0.002 0.01 0.01
shape form 0.007 0.001 0.005 0.002
act human action 0.1 0.03 0.1 0.1
phenomenon 0.05 0.03 0.09 0.1
entity 0.3 0.4 0.3 0.4

Table 3.12: Average cost

Model NOWSD SPass FirstS COMB

PTCMs 11172 10025 10782 10335
ATCMs -953 -1638 -1162 -1442
LLRTCMs -565 -1860 -830 -1365

resultant model, but its description length for the different WSD options. We only compared costs
of models for the same verb, or across the same set of verbs. Table 3.12 contrasts the average of
the final costs for the set of verbs in the sample. These are the verbs which were provided with
preference models (non-root cuts) for all WSD options for the direct object slot.

The final average costs for the ATCMs and LLRTCMs were negative. This is because costs are
minimised when preference scores are maximised. The association score and the log-likelihood
ratio score are negated in the equations (the ATCM equation 2.20 is on page 34, and the LLRTCM

equation 2.21 is on page 38).
For all model types the final cost was reduced by WSD. This indicated an increase in the

homogeneity of the argument head data after WSD. SPass provided a larger decrease in cost
because selectional preference disambiguation, by its very nature, placed more data in the regions
with highest concentration.

This subsection, and the preceding two subsections, provide quantification of the increased
frequency concentration when WSD was applied to the argument head data used for preference
acquisition. The effect was reduced for verbs where the selectional preferences were less marked.
We evaluate whether or not the increased concentration translates to improved performance of the
preferences in the next chapter.
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3.7 Conclusions

Acquisition of selectional preferences has been performed on ambiguous data, apart from some
relatively small scale experiments (Ribas, 1995a; Pozanski & Sanfilippo, 1996). Ribas (1995a)
reported the noise from erroneous senses as a significant problem for selectional preference acqui-
sition, and a source of over-generalisation of the preferences. In this chapter, we looked into WSD

systems with a view to disambiguating the argument head data. Many WSD algorithms have only
been applied to a small sample of target words. Performance varies dramatically depending on the
test data. It is not possible to predict performance on the all nouns task from results reported on a
small test set. Furthermore, overheads, such as human supervision and machine training time, are
important factors when applying WSD on a large scale.

From experimenting with three WSD options, we selected two for disambiguating the nominal
argument head data. These two options are (i) SPass — using the selectional preferences acquired
from the ambiguous data in a second pass cycle and (ii) FirstS — using the first sense of any word,
regardless of context, where there is evidence that this sense is predominant. These techniques did
not match the precision and recall figures cited in the WSD literature, however they did outperform
the random baseline. They were easily applied to the nominal data without prohibitive overheads.

SPass increased the intensity of preferences, and decreased weak associations elsewhere. This
was shown by comparing probability distributions at WordNet roots with and without disambigua-
tion. Both WSD options reduced the description length costs of the TCMs, suggesting that the
argument head data set was more homogeneous after disambiguation. This increase in the ho-
mogeneity of the probability distributions brought about an increased specificity in the preference
models. The specificity of models was increased with both options. For the majority of cases, like
produce, FirstS provided more specific models than SPass, because FirstS disambiguation was
more precise. FirstS could operate in cases where SPass could not since some verbs had TCMs at
the root. For this reason FirstS was better able to reduce the number of root cuts over the full set of
verbs. We also used the two WSD options together for the COMB option. For this option, we used
the preferences only where there was not a clear predominant sense for the target lemma. Formal
evaluation of the WSD options is reserved for the next chapter.



Chapter 4

Evaluation of Automatically Acquired Preferences

4.1 Introduction

This chapter concerns the formal evaluation of automatically acquired selectional preferences. We
evaluated our selectional preference models to see how they compared to those produced using
alternative methods and to see how different parameter settings and model types (ATCM, PTCM

and LLRTCM) affected performance.
The three model types were introduced in chapter 3. They result from differences in the

preference measure, which give rise to different description length calculations. The description
length is used in determining the correct level of generalisation in WordNet. The ATCMs use a
measure based on mutual information, the PTCMs use conditional probabilities (p � c � v � ) and the
LLRTCMs use LLR. The parameter settings include the WSD options (SPass, FirstS and COMB)
introduced in the last chapter. These options relate to disambiguation of the argument head data
using:

1. SPass – the selectional preferences

2. FirstS – the first sense heuristic

3. COMB – a combination of both

In this chapter, we also discuss the results of one evaluation on TCMs which were obtained
using three other strategies. In the first of these strategies, we used Li & Abe’s (1996, 1995) origi-
nal method of pruning WordNet at classes featuring lemmas which occurred in the argument head
data. This contrasted with our strategy of creating new leaves for word senses at internal nodes.
Secondly, we evaluated the effect of identifying, rather than ignoring, proper nouns. Thirdly we
evaluated ATCMs obtained from the argument head data specific to a SCF and slot combination,
rather than simply to a slot.

In chapter 2 we contrasted these model types and the effect of these strategies informally.
We looked at the preference model characteristics in terms of their specificity and the proportion
of preferences which were at the dummy root. In chapter 3, we made these comparisons for
the WSD options. We also looked at the effect of WSD on the probability distributions and the
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description lengths. Our conclusions were that WSD increases the homogeneity of the preferences,
and therefore reduces the description lengths of the TCMs.

In this chapter, we use formal quantitative methods for evaluation. Research on the lexical
acquisition of SCFs has made use of various gold standards (Manning, 1993; Briscoe & Carroll,
1997). There are several dictionaries available with SCF information (Hornby, 1989; Boguraev
et al., 1987; Grishman et al., 1994). Evaluation of selectional preferences is difficult since there is
no clear gold standard. Selectional preferences are semantic, and the appropriate categories for de-
scribing them are not obvious. Even given a taxonomy for classification, the semantic constraints
on arguments are less obvious than syntactic ones. This is exacerbated by the fact that semantic
constraints are only preferences, rather than hard and fast constraints. Words can be used in novel
ways, both syntactically and semantically. Arguably, speakers conform to syntactic constraints
rather more than they do to semantic ones. For these reasons, we would expect less accordance
between the decisions of different lexicographers producing selectional preference entries, com-
pared to SCF entries. It is difficult for a human to say precisely what the preferences for a verb
should be (Fillmore, 1970), without making an explicit list of the lexical fillers. For verbs dealing
with concrete nouns, for example drink, it may be relatively easy. However for verbs taking ab-
stract nouns, explain for example, it is much harder to define preferences in more detail than by
stating that they take an abstract category.

Selectional preferences are acquired for a wide variety of different purposes. Their represen-
tation and evaluation will reflect this. For example, a selectional preference acquisition system
designed specifically for speech recognition will pay more attention to the conditional probabil-
ity p � word � verb � slot � than our system does, because distinctions need to be made at the word
level. Selectional preferences designed for WSD will need to predict p � sense � verb � slot � . The pref-
erences produced by our system were required for diathesis alternation identification. We used
a class-based system for this, since generalisation to classes reduced the problem of sparse data.
Systems with other applications in mind also make generalisations for this reason. We describe the
evaluation of our preferences on the task of diathesis alternation identification in the next chapter.
This chapter concerns other formal evaluations we have performed on our models. these evalua-
tions were done to compare our preference models to those of other researchers, and to investigate
how the various parameter settings affect performance.

In the next section, we provide a broad categorisation of evaluation techniques for lexical
acquisition and see how these methods might be employed for selectional preference acquisition.
In section 4.3 we look at evaluation methods for automatically acquired selectional preferences
which have been reported in the literature. We do this in light of the categorisation provided in
section 4.2. Section 4.4 describes the evaluations that we have performed on our models, and the
results obtained. This is followed by the conclusion of our results in section 4.5.

4.2 Evaluation Methods For Lexical Acquisition

In evaluation of lexical acquisition systems, a distinction is sometimes made between type-based
evaluation, and token-based evaluation (Briscoe & Carroll, 1997). Types are the entities being
acquired, the entries made in the lexicon. These can be evaluated by comparing the types acquired
against those provided in a gold standard. The gold standard is typically compiled by humans.



Chapter 4. Evaluation of Automatically Acquired Preferences 86

Tokens, meanwhile, refer to corpus instances which are manually analysed and compared to the
acquired information.

Type-based evaluation requires a gold standard. For selectional preference evaluation, the gold
standard might take the form of precompiled selectional preferences. As an alternative one might
use a team of judges to decide whether the acquired preferences were adequate. The problem
with using human judges is one would need to supply randomly produced preferences to provide
some sort of a baseline. However, randomly produced preferences are unlikely to look reasonable
because of the large space of possibilities with a large scale semantic taxonomy such as Word-
Net. The task would be too easy and there would be no easy way of deciding objectively where
improvements could be made. To make the task harder, one might make the ‘red herrings’ more
plausible, for example, by modifying automatically produced preferences for similar verbs. How-
ever, it would not be easy to define how far to make these false preferences look realistic. One
further problem with type-based evaluation is that entries in a gold standard cannot be acquired
if they are not attested in the corpus. Furthermore, corpus-based acquisition will acquire useful
information which may have been omitted from the dictionary.

Token-based evaluation is usually performed on corpus data. It can be performed on the cor-
pus data from which the acquired entities were obtained, to quantify coverage of the training
data (Ribas, 1995a; Briscoe & Carroll, 1997). It might also be performed on a different corpus to
see how well the acquired information generalises to a new data set. Analysis of the training data
avoids the problem prevalent with type-based evaluation using a precompiled inventory, that the
system cannot acquire information unless it is attested in the corpus. If unseen corpus data is used
for testing, the new data may contain entities not attested in the training corpus, however, some-
thing can then be said about generalisation. For token-based evaluation of acquired selectional
preferences, one might look at the predicate and argument head instances in the test data and see
if they fall under the acquired selectional preferences.

The above evaluation strategies concern the ‘objective’ of the lexical acquisition system (Sparck
Jones & Galliers, 1996). They show if the acquired information was that sought, and whether er-
roneous information was excluded. As such, these strategies relate to intrinsic criteria in the
terminology of Sparck Jones & Galliers (1996). If we were interested in outputting a lexicon for
lexicographic purposes, we would then ensure that the output was appropriate for human con-
sumption. This is the ‘function’ intended for our system, referred to as the extrinsic criteria by
Sparck Jones & Galliers. For NLP, we want to know that the information that we have acquired
is useful. We therefore investigate the system’s performance on relevant tasks. This is usually
referred to as task-based evaluation.

Ultimately, task-based evaluation should be done on the fully fledged NLP system that the lex-
ical information is required for. One way to evaluate the contribution of the lexical information
is to compare the final system with and without this component, to see how much removing the
component degrades performance (Gaizauskas & Humphreys, 1996). For example, selectional
preferences might be used in an information extraction system which finds specific pieces of in-
formation from a text. The preferences might be used to help resolve anaphora, or perhaps to
disambiguate words. The system would then be evaluated with and without the selectional prefer-
ence component to see the benefits. This thesis concerns how acquisition of SCFs and selectional
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preferences can be used for identification of diathesis alternations. The evaluation of our pref-
erences on this task will be done in the following chapter. To allow some comparison with the
preferences produced by others, we evaluate our preferences using some of the tasks that others
have used.

4.3 Evaluation of Automatically Acquired Selectional Preferences: Previous Work

In this section, we discuss the evaluations reported in the literature that have been performed on
automatically acquired selectional preferences. We start by commenting on the lack of type-based
evaluations. We then describe two token-based evaluation strategies that have been devised by
Ribas (1995a). Finally, we discuss the variety of task-based evaluations for selectional preferences.

4.3.1 Type-Based Evaluation

Aside from introspections provided by the researcher (Ribas, 1995b; Li & Abe, 1998; Resnik,
1992), there have been no attempts to use a gold standard for evaluating selectional preference en-
tries. This is understandable, given the difficulty of obtaining a gold standard. There are selectional
restrictions provided in the on-line version 1 of LDOCE. These have not previously been used for
evaluation of automatically acquired selectional preferences. However, the selectional restrictions
have been used by NLP systems (Wilks & Stevenson, 1998b). We have evaluated our selectional
preference entries against the entries in LDOCE. We elaborate more on this in section 4.4.1.

4.3.2 Token-based Evaluation

Ribas (1995a) used a token-based approach to quantify the appropriateness of the generalisation
level of his selectional restrictions. These were represented as classes in the WordNet hyponym
hierarchy. We provided a description of his acquisition method on page 23 in chapter 2. Ribas
devised a measure which he referred to as the ‘generalization ratio’. 1 This required sense tagged
material. It used the word senses for nominal argument heads in the specified slot in the corpus.
The measure was calculated over all the selectional restrictions (predicate, slot and WordNet class
combinations) where at least one word sense from the WordNet class was observed in the specified
slot of the predicate in the test corpus. The generalization ratio was the number of senses that fell
at or under this subset of acquired selectional restrictions divided by the total number of senses
(incorrect or correct) that fell at or under the subset of selectional restrictions. In other words, the
denominator summed over the possible senses of the nouns under the restrictions, disregarding the
sense tags. To take a simple example, suppose the test corpus contained two tuples, � eat, direct

object, chicken � and � bake, direct object, cake � and the only selectional restrictions applicable
were SR(eat,direct object) = food and SR(bake,direct object) = object. Chicken only has one sense
under food in WordNet, and this was the intended sense of the token � eat, direct object, chicken � .
Its other senses do not fall under these selectional restriction classes. Cake, meanwhile, has three
senses under object. These are i) the baked goods sense, (ii) the patty sense and (iii) the bar of

soap sense. The generalization ratio would be 1 � 1
1 � 3 � 2

4 � 0 � 5. The numerator is the number of
senses under the selectional restrictions, 1 for chicken in its meat sense and 1 for cake in its baked

1This is referred to as the ‘abstraction ratio’ in (Ribas, 1995b).
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goods sense. The denominator is the number of possible senses of these word forms which fall
under the selectional restrictions. One sense of chicken falls under food and all 3 senses of cake

do. This measure is not very intuitive. It does not tell us anything more than a WSD task would.
It also says nothing about the selectional restrictions which are not applicable because they do not
cover any senses in the test corpus. Nor does it say anything about senses which do not fall under
the acquired selectional restrictions.

Additionally, Ribas used � verb, slot, noun–sense � tokens collected from the training corpus
to estimate the coverage of his selectional restrictions. Manually disambiguated argument head
data was used to calculate a measure referred to as ‘strong coverage’. This measure was defined as
the proportion of � verb, slot, noun–sense � tuples in the data where the noun sense was subsumed
by a selectional restriction, with the given verb and slot, divided by the total number of tuples.
Ribas also defined a ‘weak coverage’ measure. This calculated the proportion of tuples in the data
where any sense of the noun was subsumed by a selectional restriction, divided by the sum of
all tuples. For example, if the corpus contained one instance of � bring � direct ob ject � evidence

- legal statement � and the only relevant selectional restriction was SR(bring,direct object) = in-

formation, the selectional restriction would have covered the wrong sense of evidence. strong
coverage would be 0

1 � 0, whilst weak coverage would be 1
1 � 1. Strong coverage gives an idea

of how well the selectional restrictions cover the data. Weak coverage is not a useful measure as
there is no requirement for selectional restrictions to cover the wrong senses of the data. The major
benefit that weak coverage brings is that there is no requirement for sense tagged data. These cov-
erage measures do not take into account inappropriate selectional restrictions. There is no penalty
for a system which simply outputs selectional restrictions for all the WordNet root classes. The
generalization ratio would be adversely affected by such a system, so this should be considered
alongside strong and weak coverage.

4.3.3 Task-Based Evaluation

Researchers have favoured the use of task-based methods for evaluating preferences. Typically,
preferences have been acquired for a specific task, and so it makes sense to evaluate them on that
task. The tasks that have been predominantly used for evaluation of automatically acquired selec-
tional preferences are WSD, structural disambiguation, and a decision task where the preferences
are required to differentiate between genuinely co-occurring, and artificially combined word pairs.
The latter method is referred to as pseudo-disambiguation by Rooth et al. (1999), and we will adopt
this terminology. Rooth et al. (1999) also evaluated their distributionally-based classification on
the task of smoothing, that is, providing probability estimates for new data.

Word Sense Disambiguation Evaluation

As we pointed out at the start of chapter 3, selectional preferences can be used for WSD. Many
researchers have applied automatically acquired selectional preferences to the WSD task (Ribas,
1995b; Resnik, 1997; Federici et al., 1999). We have already discussed some of these results in
our comparison of WSD systems in chapter 3. For completeness we include them again here. In
chapter 3, we discussed possibilities for disambiguating the argument head data fed to the selec-
tional preference acquisition system. In this chapter, we focus on the evaluation of the acquired
selectional preferences.
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Both Ribas and Resnik performed WSD on the sense tagged data in SemCor. Resnik (1997)
tested selectional preferences acquired from the portion of the Brown corpus within the Penn
Treebank. He used his preference models, described on page 27 in chapter 2 for the 100 most
strongly selecting verbs found in the corpus data. These can be expected to perform better than
verbs with weaker selectional properties. The senses of argument heads under the WordNet classes
with the highest selectional association score were selected. Resnik achieved overall accuracy of
44%, averaged over the slot relationships, with a random baseline of 29%.

Abney & Light (1999) used the same training and testing set as Resnik, but with the HMM

models described on page 25 in chapter 2. They obtained an accuracy for the direct object re-
lationship of 42%, compared to Resnik’s 44% for this slot. Using their automatic parser they
obtained preferences for the 100 verbs acquired using the entire BNC as training data. For this set,
accuracy increased to 54%.

Ribas obtained an accuracy figure of 53% using a subset of the SemCor data. This was not
significantly better than the random baseline of 52%. This poor performance was undoubtedly
affected by the small quantity of training data used. Since Ribas was comparing performance with
and without sense tagging, he only used a portion of the SemCor data for training. The rest of
the SemCor data was held out as test data. The training portion in both cases amounted to 20,000
tuples. In our experiments with lexicon A, we have 318,000 tuples for the object slot alone. Ribas
obtained 56% accuracy for the preferences acquired from the same argument head data with sense
tags included. This was an improvement on the result without disambiguation, but still only a
little above the random chance baseline. The results of (Abney & Light, 1999) and (Ribas, 1995a)
together imply that the quantity of training data used affects performance.

Ribas also evaluated on 2,658 manually analysed tuples which involved the verbs rise, report,

seek and present. For this precision was 80% and recall 78%, compared to a random baseline of
63%. It should be noted that on this occasion the testing set used was a subset of the training set. 2

Ribas included monosemous nouns in his sample, thus giving rise to a higher baseline.
It is difficult to compare WSD performance in the literature since the test and training samples

typically differ. The SENSEVAL (Rosenzweig, 1998) competition provided an opportunity for par-
ticipants to compare system performance under the same conditions. Although, system differences
will mean that those conditions may favour one type of system more than another. There were two
systems using only automatically acquired preferences in the SENSEVAL competition. One of
these was the SUSSEX system (Carroll & McCarthy, 2000). This used our ATCM preferences with
FirstS WSD. For the all nouns task fine grained precision, to the HECTOR word senses, was 41%.
The other system was the OTTAWA system (Kilgarriff & Rosenzweig, 2000). This system obtained
a precision of 33% on the same all nouns task. The random baseline on this task was 30% with a
phrase filter to handle the easy multi-word cases (14.6% without).

Federici et al. (2000) disambiguated Italian verbs using SCFs and selectional preferences ac-
quired in the analogy-based system described in this thesis both on page 18 in chapter 2, and 59
in chapter 3. They used the equivalent of the SENSEVAL test suite for Italian, ROMANSEVAL. The
example-base was built from MRDs containing subcategorization information. A portion of the
verbs were sense-tagged, providing supervised training data. A precision of 81% was reported.

2He used the parsed version of the WSJ in the Penn Treebank.
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This cannot be compared with the SENSEVAL results because of substantial differences in both
the task and the data. Manning & Schütze (1999) point out that WSD of verbs is best done using
subjects and objects, whilst nouns require a wider context.

Structural Disambiguation Evaluation

Many researchers have applied selectional preferences to structural disambiguation (Li & Abe,
1998; Resnik, 1993b, 1993a). This has typically been performed to resolve PP attachment using
the parses in the WSJ section of the Penn Treebank as training and evaluation data. The task
involves resolving the ambiguity in sentences like the one shown in example 12. The selectional
preferences are used to determine whether PPs, (with the stick in our example) should be attached
to the verb (hit) or the NP (the man).

(12) The boy hit the man with the stick

The parsed data is used to collect tuples where the PP is attached to the verb, and those where
the attachment is to the NP. Selectional preferences are obtained for the head nouns in the two
types of PP. The preferences for the verb attached PPs are specific to the verb, hit in our example.
The preferences for the NP attached PPs are specific to the head of the NP, man in our example.

The test data is of the form � verb, noun1, prep, noun2 � . The preferences are used to obtain
two scores: (i) a score for the preference for noun2 given � verb, prep � , using the verb attachment
preferences, and (ii) a score for the preference for noun2 given � noun1, prep � , using the noun
attachment preferences. These two scores are then compared.

Resnik (1993b, 1993a) used mutual information scores collected over WordNet for both the
verb and NP attached data. There was ambiguity in the data because the nouns can be classified
under many different WordNet classes. For the NP attached data, Resnik took each value of noun2
in turn and found the value of noun1 that maximised the mutual information score, obtained using
his method of populating WordNet with probability distributions, which we described earlier on
page 22 in chapter 2. The classification of noun1 (class1) was then fixed for the value of noun2.
The mutual information scores for all possible classes of noun2 (class2 � CLASSESnoun2) for
the NP attached data were multiplied by the frequency of � class1, prep, class2 � . The mutual
information scores for the verb attached data were obtained in the same manner, except that noun1
is not involved, the verb is fixed, and the mutual information scores over the classes of noun2 are
multiplied by the frequency of � verb, prep, class2 � . A paired samples t-test was used on the
means of the mutual information scores over the possible values of class2, from the NP attached,
and verb attached data respectively. If the value of t was positive then the target was resolved in
favour of NP attachment, if the value was negative VP attachment was used for the target instance.
Resnik (Resnik, 1993a) obtained an accuracy of 79% using this method, when his system was
left to decide in all cases. Accuracy was a little lower than Hindle & Rooth’s (1993) method
using lexical information. However, Resnik showed that if confidence levels were used to restrict
application, his class-based approach had wider coverage.

Abe & Li (1996) applied their tree cut models to PP disambiguation. They also used the
attachment decisions of the parsed portion of the WSJ in the Penn Treebank. They obtained ATCMs
using the process which we described on page 31 in chapter 2. They then compared the association
scores for the possible classes of noun2 on the ATCM for verb attachment, with the scores on the
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ATCM for NP attachment. They also obtained results on the same data for Resnik’s selectional
preference models (Resnik, 1993b) and their conditional probability models (akin to our PTCM

models). Precision was around 95% for all methods, but the methods achieved different levels of
coverage. The ATCMs provided 80% coverage whilst the selectional association models covered
only 64% of the data. The probabilistic tree cut models achieved 73% coverage.

4.3.4 Pseudo-Disambiguation Evaluation

In this task, the system has to distinguish which of two word pairs is a more likely co-occurrence.
The task is typically performed with respect to specific slot relations for a verbal predicate. The
tuples comprise the slot, verb, and lemma in argument head position at the slot. A test set of correct
tuples are extracted from a corpus. Each tuple is given to the system alongside an artificially
produced tuple. These artificial tuples are often produced by replacing the verb lemma from the
genuinely occurring tuple, with a verb selected at random. The exact mechanism of producing the
artificial pairs varies, and this can affect results.

Tuple evaluation has been favoured by researchers using proximity based methods (Grishman
& Sterling, 1993; Pereira et al., 1993; Lee, 1999; Rooth et al., 1999). Rooth et al. (1999) used a
tuple decision task to evaluate their automatically produced classifications. The semantic classes
in the classifications contained both verbal predicates and noun arguments and were described in
chapter 2 on page 17. The tuples comprised two verbs (v and v � ) and a noun (n) which were all seen
in isolation in the training corpus. Only one of the verbs (v) was attested in the test corpus with
the noun. Additionally, both vn and v � n combinations were removed from the training corpus. The
invalid verbs were selected with regard to frequency. All the lemmas used in evaluation occurred
between 30 and 3000 times in the training corpus, in a specified slot relationship. There were 1337
evaluation triples and accuracy was calculated as the number of times that the probability estimate
for the genuine pair (vn) was greater than that for the unattested pair (v � n). The random baseline
was 50%. Optimal performance at 80% accuracy was obtained for models with between 25 and
100 classes.

(Pereira et al., 1993) performed a similar evaluation on their distributional classification. This
was conducted using only 104 verb-noun pairs selected at random from the 44 million word 1988
Associated Press newswire corpus. Only verbs with a frequency between 500 and 5000 were
chosen. The test pairs (vn and v � n) were removed from the training corpus. The system’s decisions,
on which pair was more likely, were compared to those provided by the frequencies of these test
pairs in the original training corpus. The proportion of errors was around 23% (77% accuracy)
when the model included more than 50 classes.

Grishman & Sterling (1993) evaluated their selectional constraints on a slightly different tuple
task. The selectional constraints in this case were confusion matrices obtained from distributional
data. We described these in chapter 2 on page 18. Instead of using artificially created tuples
for evaluation, they obtained tuples from all the possible parses of the test corpus using a non-
stochastic grammar. The tuples were manually classified as valid or invalid for evaluation purposes
and the systems decisions were compared to the decisions of the human experts. The tuples were
scored as true positives (TPs) if the system and the experts both recorded the item as valid. False
positives (FPs) occurred if the system alone marked the item as valid. The items were scored as
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true negatives (TNs) if the system and experts both agreed that the tuple was invalid, and as false
negatives (FNs) if the item was marked as invalid by the system, but as valid by the experts. Recall
was calculated using TP

TP � FN . The error rate was calculated as FP
FP � TN . A ‘quality measure’, given

in equation 4.1, was used to see if the smoothing process performed better than a random process
would have been expected to. In the equation, the s subscript represent the values after smoothing
and the ns subscript represent the values using the raw training data for predicting validity, without
any smoothing.

Quality measure �
TPs � TPns

FNns

FPs � FPns
TNns

(4.1)

Performance of the confusion matrices was also compared to that using a manually created
hierarchy, produced for the Fourth Message Understanding Conference (MUC-4) (MUC-4, 1992).
According to the quality measure, both the confusion matrices and the manually produced hierar-
chy produced better results than those predicted for a random process for smoothing. Smoothing
with both the manually created hierarchy and the confusion matrices improved the recall, at the
expense of error rate, compared to the non-smoothed model. The confusion matrices obtained a
recall of 34% and an error rate of 9% when using a threshold (0.29) on the frequencies provided
by the confusion matrices produced. The non-smoothed model achieved 30% recall and 7% er-
ror rate. The results for the confusion matrices were not significantly better than those for the
manually produced hierarchy.

4.3.5 Smoothing

Rooth et al. (1999) also used a measure of ‘smoothing power’ for their distributional-based clas-
sification models. This concerned the coverage of test data with the acquired classification. Rooth
et al. calculated the proportion of 1000 randomly selected verb and noun pairs which were as-
signed a joint probability by their models. Coverage of this test data was increased by reducing
the number of classes allowed, with the highest smoothing power associated with a classifica-
tion containing only 1 class. A compromise was required between performance on this task and
discriminatory performance of the classes on the pseudo-disambiguation task. A model with 50
classes achieved a good compromise and attained a smoothing score of 93%.

4.4 Evaluation of the TCMs

In section 4.2, we outlined three approaches to evaluation, (i) type-based (ii) token-based and
(iii) task-based. In section 4.3, we provided examples of each from the literature on automatic
acquisition of selectional preferences. In this section, we describe the evaluation of our TCMs using
all three of these approaches. The purpose of our evaluation was threefold. Firstly, to see how our
models compared with semantic constraints specified a priori by lexicographers. Secondly, to see
how the performance of our models compared to those of other preference models reported in the
literature. And thirdly, to see how the parameter settings affected performance.

For type-based evaluation, we compared our preference models to preferences provided in
the on-line version of LDOCE. This was performed using a manually created link between the
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Table 4.1: The percentage of argument head lemmas not in WordNet

slot % not in WordNet
object 3
subject 5
PP 4

WordNet hierarchy and the LDOCE semantic codes. Token-based evaluation was performed using
the tokens from a dictionary, the Cambridge Dictionary of International English (CIDE) (Procter,
1995), rather than a corpus. For the CIDE evaluation, we manually tagged the argument heads in a
small set of dictionary examples with WordNet senses. We then calculated the proportion of these
examples that were associated with preferences by our TCMs.

Using dictionaries for evaluation does have its problems. For both type-based and token-based
approaches, there are likely to be significant differences between the facts that the lexicographer
feels are important, and naturally occurring corpus data. Both the entries in LDOCE, and the
dictionary examples in CIDE are likely to contain a higher proportion of specialised senses and
rare usages. Many of these will not be attested in corpus data used for obtaining TCMs. TCMs
will be penalised in these cases. Additionally, there are likely to be senses in corpus data that are
absent from the dictionaries. Nevertheless, we performed the dictionary-based evaluations to see
the extent of coverage of the lexicographers’ examples, and to observe the behaviour of the various
parameter settings and model options with regard to this.

An alternative approach for token-based evaluation is to investigate the coverage of manually
analysed data. Ribas (1995a) did this using a manual analysis of a portion of the training data.
He used this for his generalization ratio, and strong coverage measures described in section 4.3.2
above. The generalization ratio calculated the proportion of correct senses from the data that were
under classes with a preference, compared to the proportion of both valid and invalid senses for
the subset of sense tokens which occurred under an acquired selectional restriction. The strong
coverage measure calculated the proportion of sense tokens which occurred under a selectional
restriction. The generalization ratio is particularly unintuitive, and we feel it is less informative
than performance on a WSD task. It does, however, favour discriminatory preferences. The strong
coverage measure was used on the training data and the score obtained simply reflected the cov-
erage of this. It would have been interesting to know how this related to coverage of held-out
data.

Instead of manually tagging a portion of the training data with WordNet senses, which would
have been a laborious process, we relied on recall in the two task based evaluations, and the
number of verbs with root cuts to provide an insight into coverage of the test data. In addition to
this, the percentage of lemmas from lexicon A not found in WordNet for the subject, object and
PP slots is given in table 4.1. The two task-based evaluations that we performed were WSD and the
pseudo-disambiguation task.
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Figure 4.1: ATCM for attempt direct object slot

4.4.1 LDOCE Evaluation

The MRD LDOCE (Procter, 1978) version 1 includes semantic codes which provide constraints on
the semantic type of fillers for the subject and object slots. These constraints are expressed as hard
and fast restrictions, rather than preferences on a continuum. There are 32 semantic codes which
are made up of combinations of 16 core categories. One of the 32 codes denotes no restrictions.
The labelling of the subject and object slots for the verbal entries was provided by human lexi-
cographers. Only one semantic code is specified for each slot and verb sense combination. The
semantic codes are broad and cover a multitude of slots fillers. For example, the class W is used
for a non-animate category, it covers both inanimate and abstract items.

The ‘gold standard’ falls prey to errors, inconsistencies and omissions as one would expect
from such a large manmade resource. For example, the category of no restrictions is placed on
the direct object of the first sense of attempt, the sense of to make an effort at. The glossary
provided within this version of LDOCE is as follows:

to make an effort at; try : He attempted the examination but failed. I attempted to
speak but was told to be quiet. I attempted walking until I fell over. He was found
guilty of attempted murder even though the other man did not die.

It would seem that a preference for the abstract LDOCE code would be more appropriate. This
would express a difference between the acceptability of attempt an examination from less likely
combinations such as attempt a woman. A portion of the ATCM (without any WSD) obtained for
attempt is illustrated in figure 4.1. The areas of preference (with scores above 1) clearly accord
with intuition, and with the examples in the LDOCE glossary. In many cases where the category
of no restrictions is applied, it may be that this is done because the broad nature of the LDOCE

semantic codes make it difficult to make subtle distinctions. For example, draw (the with a pencil

sense) and sing (the song sense) both have the abstract class for the direct object slot. Whether
this is a problem really depends on the frequency with which the restrictions are required to make
narrower distinctions. The LDOCE restrictions have been used successfully for WSD. Wilks &
Stevenson (1998b) made use of them in their WSD system. They obtained an accuracy of 57%
when using these alone on a small portion of the SemCor data (200 words). This sample included



Chapter 4. Evaluation of Automatically Acquired Preferences 95

monosemous words and was compared to a baseline of 50%, if the first sense of each word was
selected for the training and test sample put together.

On the assumption that these manually produced restrictions have some validity, we compared
our automatically produced preferences to see (i) the extent to which the acquired ones were
matched in LDOCE and (ii) the extent to which the LDOCE preferences were found by our system.
We did so by calculating precision and recall over the types contained in LDOCE. These measures
are defined in equations 3.2 and 3.3 on page 52 in terms of true positives (TPs), false negatives
(FNs) and false positives (FPs). TPs were the cases where a restriction listed for a verb and slot in
LDOCE also occurred in the TCM models produced by our system. FNs were cases where an LDOCE

restriction did not occur in our model. Finally, FPs occurred when an acquired preference was not
listed in LDOCE. To overcome the fact that our models contained preferences on a continuum
signified by the preference scores, rather than restrictions, we used a threshold on the preference
score. Only preferences with a score above the threshold were compared to the LDOCE restrictions.

Of course, the dictionary and corpus-based preferences were expected to differ, regardless of
the manmade versus automatic distinction. Corpus-based methods only observe preferences which
appear in the training data. Moreover, using statistical techniques, as we do, we would only expect
to find preferences that are reasonably common in the corpus data. LDOCE provides evidence for
all senses of a verb, however rare. This lack of coverage of rare events by the TCMs was expected
to adversely affect recall in this type-based experiment. This should be borne in mind when in-
terpreting the results. It is better that the preferences cope with more common events, since the
preferences were ultimately created for handling naturally occurring corpus text. A related issue
is that acquisition of preferences from real data was expected to uncover legitimate preferences
which have been omitted from LDOCE, either from error, or because the corpus contained spe-
cialised senses of the verb usages. This was expected to affect precision, and again was explained
by the difference between dictionaries and corpora.

In order to compare the LDOCE restrictions with the classes in our TCMs, we required a
mapping between LDOCE and WordNet. Although there is at least one such mapping in exis-
tence (Knight & Luk, 1994), this was not a resource available to us. We developed our own
mapping for this purpose. We shall refer to this hereafter as the LDOCE-WordNet mapping. In our
mapping, the LDOCE semantic codes were mapped to appropriate WordNet classes. This was a
‘one to many’ mapping between the core 16 LDOCE categories and WordNet, since invariably the
LDOCE codes corresponded to several WordNet classes. Some categories, for example animate,
inanimate and human, were easily mapped to WordNet classes. Others, for example immovable

solids and movable solids, were not easily identified with a small set of WordNet classes. The
two classifications make different distinctions. For some problematic LDOCE categories, such as
the immovable - movable solids distinction, we simply mapped to a more general WordNet class
which covered both categories, even though some distinctions would be lost. This was prefer-
able to enumerating ungainly sets of WordNet classes. Some of the LDOCE categories refer to
disjunctions of the core set of 16 classes. These were easily dealt with by mapping between the
LDOCE category and all the relevant WordNet classes. For example, the category animal or hu-

man is mapped to the WordNet classes animal and person. Other LDOCE categories are defined
using a conjunction of core categories, for example a category for abstract and solid is provided.
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Table 4.2: LDOCE-WordNet mapping for some imaginary verb sense entries

LDOCE WordNet
verb verb sense restrictions WordNet classes
v1 v11 abstract abstract event shape ...
v1 v12 abstract&solid NIL
v2 v21 inanimate object
v2 v22 movable object
v2 v23 human person
v3 v31 animal or human animal human
v3 v32 human human

Example verb entries with this restriction include:

� the direct object of improve, in the sense of improve ones ability

� the direct object of conduct in the sense of direct the course of an activity

� the direct object of hold, in the sense of a container holding a quantity of a substance

It is hard to see how the potential slot fillers for this category are related, and how they are
distinguished from nouns with the general LDOCE abstract category. We did not evaluate on
verbs for which the LDOCE restrictions include highly problematic LDOCE categories for which
a reasonable mapping could not be found. The majority of category labels were not problematic.
Furthermore, most of the verbs in our sample did not contain the problematic categories (86% of
verbs having the direct object slot, and 90% for verbs having the subject slot).

Figure 4.2 displays a portion of our LDOCE-WordNet mapping. In table 4.2, we provide some
imaginary examples of verb sense entries, with LDOCE semantic codes and the corresponding
WordNet classes to show how our mapping worked. Note that the verb v1 would have been
ignored in our evaluation because sense v12 includes a problematic category which cannot be
mapped. Since LDOCE provides entries for verb senses, rather than forms, we included duplicated
restrictions for a form as many times as they occurred for the senses of that form. Both v2 and v3
from our contrived example have duplicated restrictions.

We did not expect the TCMs to be at exactly the same level of WordNet as that specified
by the LDOCE entries and the LDOCE-WordNet mapping. Differences between the LDOCE and
WordNet semantic taxonomies made it hard to predict whether the TCMs would be above or below
the LDOCE restrictions, when the latter were mapped to WordNet classes. On the whole, LDOCE

preferences were expected to be higher than those in WordNet because there are only 32 LDOCE

semantic codes, whereas there are in excess of 60,000 WordNet classes in the noun hyponym
hierarchy of WordNet version 1.5. There are, however, counter examples. Some LDOCE semantic
categories were mapped to rather specific WordNet classes, further down the hierarchy than the
typical level of the TCMs. For example, the category organic material was mapped to a subset of
the hyponyms of the WordNet substance class. We categorized LDOCE restrictions as TPs when
the mapped class was either above or below a class on the TCM with a preference score above the
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Figure 4.2: An illustration of the mapping between LDOCE and WordNet

threshold. The LDOCE restriction was counted as a FN otherwise. The acquired preferences, above
the threshold, which were not above or below the mapped LDOCE restrictions were categorized as
FPs.

There was a one-to-many mapping between LDOCE restrictions and the WordNet classes. The
TPs and FNs were counted with respect to LDOCE restrictions. We needed to count FPs using the
same LDOCE categories which were used for calculating TPs in order to combine the two counts
for precision. The acquired WordNet preferences for a verb were combined together to map to
LDOCE semantic codes in order to count the TPs. This should have ideally been done by searching
the hierarchy for the smallest set of LDOCE categories to fit a given set of WordNet classes (which
might be anywhere in the hierarchy). Instead, to avoid heavy computation, we used some heuristics
to perform the mapping for the most prevalent cases.

We evaluated on the acquired TCMs for a set of verbs from a randomly selected sample of
500 sentences, intially referred to on page 36. The verbs were acquired using the data in lexicon
A. The bulk of our evaluation was performed using the LDOCE restrictions at the object slot, we
also compared performance for the subject slot using one parameter setting. Table 4.3 displays
the precision and recall results for various TCMs. The TCM type is specified in the first column.
The threshold (thresh) used depended on the TCM type. For ATCMs, an association score of more
than 1 occurred when the conditional probability p � c � v � was greater than the prior probability
p � c � . This indicated a positive association between the verb and the class and therefore provided
an obvious choice of threshold. However, a higher threshold did increase the precision, whilst
reducing recall. For LLRTCMs a threshold of 0 was used. This was the point where the observed
data for the conditional distribution was greater than that expected. We also tried a threshold of
1, and one of 3.84. The latter is the threshold for 95% significance (one tailed) when using the
log-likelihood ratio against the chi-squared tables. The higher thresholds did increase precision,
however, recall was still lower than that for the ATCM with a threshold of 1. For the PTCMs there
was no obvious choice of threshold. Using a threshold at 0.1, we obtained similar results to those
obtained with the ATCM and a threshold of 2.
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Table 4.3: LDOCE evaluation: for different model types and thresholds

TCM thresh WSD slot precision recall
ATCM 1 none obj 63 75
ATCM 2 none obj 70 64
LLRTCM 0 none obj 45 71
LLRTCM 1 none obj 56 70
LLRTCM 3.84 none obj 63 67
PTCM 0.3 none obj 89 45
PTCM 0.1 none obj 70 64
ATCM 1 none subj 60 69

Table 4.4: LDOCE evaluation: for ATCMs with different WSD options

TCM thresh WSD precision recall
ATCM 1 none 63 75
ATCM 1 SPass 65 73
ATCM 1 FirstS 57 80
ATCM 1 COMB 56 77

Using the ATCMs for the direct object slot, we evaluated the three WSD options introduced
in the last chapter. The results are displayed in table 4.4. SPass slightly increased precision
whilst reducing recall, however these differences were not significant. FirstS significantly reduced
precision and increased recall.

Overall there was a reasonable level of coverage of the semantic constraints in the ‘gold stan-
dard’ (up to 77% recall). There were a considerable proportion of FNs caused by TCMs cut at the
root. For example, 79% of FNs for the ATCM with a threshold of 1 and no WSD, were caused
by TCM root cuts. SPass and FirstS reduced the number of these root cuts, as seen by the sec-
ond column in table 4.5. Some LDOCE restrictions were not observed in the acquired preferences
because they referred to specialised senses, which are less likely to occur in the corpus data. For
example, the direct object slot of continue is given a human restriction for the sense specified with
the glossary:

to (cause to) stay in a particular job or office : The king decided to continue Pitt as
chief minister

Precision values were adversely affected where acquired preferences were found which could
not be mapped to the LDOCE ones. Some of these occurred where LDOCE provides the code for
no restrictions. The percentage of verbs where this occurs is displayed in the third column of
table 4.5. In many cases, the acquired preferences were appropriate. For example, a portion of
the ATCM obtained for the direct object slot of begin is displayed in figure 4.3. This ATCM was
acquired with no WSD options. The preference at the classes action and activity contrasts with
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Figure 4.3: ATCM for begin direct object slot

dispreference at the classes someone and asset. The argument heads under these classes on the
whole occurred because of (i) parser errors, for example someone, and (ii) lexical ambiguity, for
example venture, which occurs under both activity and asset. The acquired preferences were in-
tuitive, however the precision score was reduced because no preferences were provided in LDOCE

for begin.
There were also many cases where preferences were attested in the corpus data, but did not

match the ones in LDOCE. Some genuine FPs arose because the acquired preferences were faulty.
For example, a preference for body part at the direct object slot of devise arose because of lexical
ambiguity. Other FPs arose because of errors in the mapping, rather than any fault in the preference
acquisition system. For example, the direct object slot of drop included a preference for the
WordNet class piece. This should be covered by the LDOCE preference abstract, but was omitted
from the mapping. Other acquired preferences appeared legitimate, but were simply not recorded
in LDOCE. For example, LDOCE provides preferences of abstract and human for the direct object
slot of like. The acquired preferences however included artifact, substance and natural object,
which were not covered by the LDOCE preferences. The fault appeared to be with LDOCE in this
case.

WSD, particularly FirstS, concentrated areas of preference, so that preferences were detected
more readily. This increased recall but also reduced precision. The reduction in precision is
presumably accounted for by the fact that the lexicographers are less likely to identify weaker
preferences, and preferences for less strongly selecting verbs. Consequently, it is more likely that
there will be a mismatch between LDOCE and the acquired preferences.

4.4.2 CIDE Evaluation

We performed a token-based evaluation using the definition examples in CIDE (Procter, 1995).
This experiment was done on a small scale since it required manual sense tagging of the argument
heads in the CIDE definitions. A sample of ten verbs were selected from the sample of 30 verbs
introduced in chapter 3 on page 65. The evaluation was performed on the TCMs acquired for these
ten verbs using data from Lexicon A.

The dictionary, as with most others, provides alongside each entry a list of example uses. From
these the head nouns in the subject and direct object slots, and those in the noun phrase of PPs,
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Table 4.5: Effect of WSD on proportion of verbs with acquired preferences

WSD % verbs cut at root % verbs with prefs in ATCM

and none in LDOCE

none 25 4.2
SPass 22 4.6
FirstS 18 4.9
COMB 18 4.9

were extracted manually. Each noun in the specified slot was assigned the WordNet class that best
represented the sense of the noun. As much as possible, senses were selected which contained the
noun as a direct member, i.e. one of their synonyms. In cases where an appropriate class could not
be found from the senses of the noun, a class was selected with a meaning as close as possible to
the meaning of the head noun. For the PP slot, clear cut cases of phrasal verbs were ignored since
these are handled separately from PPs by the SCF acquisition system.

The acquired preferences were evaluated using the sense tokens, obtained manually from
CIDE, for the specified slot. Each token was scored correctly if it fell at or under one of the
preferences (again using a threshold of 1 on the association score to establish which classes ex-
hibit a positive preference). A simple system which stated that there was a preference for all the
WordNet roots, or all the classes in any cut across WordNet, would have attained 100% accuracy.
A baseline was used which considered the proportion of classes on the TCM with preferences
above the threshold for each token. This is defined in equation 4.2 where i is a token from the test
sample S, and v is the verb specified in the instance i.

∑i � S

� classes in TCMvi with score above threshold �

� classes in TCMvi

�

� S � (4.2)

The baseline did not explicitly account for the specificity of the cut, although the specificity of
the TCM did affect the baseline since a more specific cut typically comprised more classes, with
less of these over the threshold, (those that were over the threshold were typically stronger). The
baseline was intended to reflect the chance that an item fell under one of the classes on the TCM that
expressed a preference, if the classes showing a preference were picked at random. The baseline
assumed that the token senses were distributed uniformally under the 11 WordNet roots. The
tokens would not have been distributed uniformally, however they would be reasonably spread,
since they were taken from the examples for a number of verbs.

Figure 4.4 illustrates the evaluation process for one token using two different ATCMs. The
tuple � believe � direct ob ject � robber � was observed in the dictionary. This token was manually
assigned the class person. The token fell under both the ATCMs, with and without FirstS. However,
FirstS produced a more specific ATCM. Without FirstS, the baseline ratio for this instance was 12

25
because there were 12 classes on the TCM above threshold, out of 25. With FirstS, the ratio was
9

26 .
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Figure 4.4: Robber under ATCMs for believe object slot

Table 4.6: CIDE evaluation for ATCMs

slot WSD % correct BL diff
obj none 92 58 34
obj SPass 75 37 38
obj FirstS 89 48 41
obj COMB 80 35 45
subj none 88 67 21
subj SPass 74 42 32
subj FirstS 83 47 36
subj COMB 76 35 41
pp none 88 65 23
pp SPass 63 41 22
pp FirstS 85 62 23
pp COMB 68 47 21
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Table 4.7: CIDE evaluation, object slot

model %correct BL diff
ATCM 92 58 34
LLRTCM 71 25 46
PTCM 34 3.5 30.5
prior 83 27 56

Results are displayed in table 4.6. The % correct was calculated over all items where prefer-
ences were acquired, because they occurred in lexicon A with a frequency above the threshold (as
before, this was set at 9). The last column shows the difference between the % correct and the
baseline (BL). For object and subject slot position this difference increased from (i) not perform-
ing any disambiguation, to (ii) the iterative technique alone, to (iii) using the first sense heuristic
to (iv) the combination of the first sense heuristic and the iterative approach. The larger % cor-
rect score in the case without WSD was due to a larger proportion of classes with a preference
above the threshold on the cut. This made it more likely that a test item was subsumed by a class
with a positive preference. The larger difference between % correct and the baseline with WSD

was because WSD produced more specific cuts. These tended to have a lower baseline ratio since
there were less areas of preference over a larger number of classes. The preferences were more
discriminatory.

For the PP slot, no improvement in performance was associated with WSD of the input data.
Indeed the iterative approach seemed to be slightly detrimental. This was due to the need to specify
both the verb and preposition for acquisition and application of these preferences, and consequent
shortage of data for training. The sparse data problems were highlighted by the fact that over half
of the instances from the dictionary could not be used as the verb and preposition had not been
seen with sufficient frequency (greater than a threshold of 9) in lexicon A.

Results for the ATCMs at the object slot are contrasted with the results for the PTCMs and
LLRTCMs, all without WSD, in table 4.7. The last column displays the difference between %
correct and the baseline (BL). The difference to the baseline highlights the discriminatory power
of the preferences. This difference was largest for the LLRTCMs.

4.4.3 Task-Based Evaluation - WSD

The type and token evaluations required the use of a threshold on the acquired preferences. This
was because the LDOCE constraints are supplied as restrictions, and are not given a score on a
continuous scale. The examples supplied in CIDE were also interpreted on an ‘all or nothing’ basis.
There was no notion of the likelihood of the examples. These evaluations allowed us to compare
acquired information with that specified by humans a priori. In addition to these evaluations, we
examined how our preferences performed on NLP tasks.

In a task-based exercise, a threshold is not required. However, a threshold can be used to
constrain the application of the preferences, only ranking items which have preferences above the
threshold. For the WSD evaluation we used a threshold of 1 on the association scores of the ATCM
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before applying them.
In this subsection, we describe the results obtained when we applied our TCMs to the task of

WSD. We described this application and gave some results in chapter 3. In that chapter, WSD with
preferences was used to reduce the noise in the input data to the selectional preference acquisition
system. In this chapter, we report the results obtained when we used the WSD task for evaluating
the performance of the different model types and various parameter settings of our system. We
also compare the results obtained to those reported in the literature for application of acquired
preferences to WSD.

The WSD task involved finding the correct sense of each target lemma. The senses were ranked
according to the scores of any of their superordinates that featured on the TCMs. This process was
illustrated in figure 3.5 on page 64. For a target noun, the sense was selected which had the highest
preference score. The preference score for a sense was inherited from its superordinate classes on
the TCM.

The WSD evaluation was performed on the SemCor data, since this is freely available and,
consequently, has frequently been used by other researchers. Additionally, we used the SENSEVAL

test suite for ensuring our preferences were performing reasonably compared to other systems
using selectional preferences.

For the SemCor evaluation, we obtained ATCMs for the sample of 30 verbs referred to on
page 65 of chapter 3. The ATCMs were obtained by training on the data in lexicon A. The prefer-
ences were evaluated with each of the WSD options applied to each of the three target slots. We
compared the performance of the ATCMs at the direct object slot without WSD to those produced
using the original method of pruning WordNet (Abe & Li, 1996), and to those produced using
data specific to a SCF. We also used a smaller portion of the data to evaluate the ATCMs with and
without proper noun recognition.

Precision was calculated as the number of instances where the correct answer was included
in the classes returned by the system, divided by the number of instances for which the system
attempted disambiguation. Recall was calculated as the number of instances where the correct
answer was included in the classes returned by the system, divided by the total number of test
instances. Systems which do not rely on sense tagged instances for training have typically used
the random baseline for comparison (Kilgarriff et al., 1998). This is 1�

senses
� averaged over all

instances in the sample. We devised a higher baseline, the MCBL defined on page 65, to allow
for the fact that our system could choose more than one sense tag. For this baseline, each target
instance 1�

senses
� was multiplied by the number of classes left over after disambiguation (thus a

baseline for precision only). The MCBL baseline did not indicate the semantic proximity of the
senses remaining after disambiguation and was consequently rather high. Comparing our results
to this baseline did not allow for cases where our system was settling on related senses.

Table 4.8 displays the results for the object, subject and PP slots using the sample of 30 verbs
and training data from lexicon A. All figures given are percentages. The differences between the
WSD options were not significant. The main effect of WSD was observed in the previous chapter:
it produced more specific cuts and reduced the number of root cuts. For the subject and object
slots this did not make a difference, as for these all 30 verbs have cuts below the root. Selectional
preferences acquired for the PP slot performed poorly on the task of WSD. This was presumably
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Table 4.8: SemCor evaluation

slot WSD recall precision MCBL RBL

obj none 35 48 43 28
obj SPass 28 43 37 26
obj FirstS 31 42 42 28
obj COMB 28 41 39 27

subj none 35 51 47 27
subj SPass 31 48 45 26
subj FirstS 35 52 47 27
subj COMB 35 53 47 27

pp none 9 27 40 26
pp SPass 9 29 39 25
pp FirstS 15 43 40 26
pp COMB 13 43 39 24

affected by weak selectional properties of the 30 verbs for the head noun in the NP within the
PP. Additionally, the poor performance was exacerbated by sparse data problems. There was
considerably less training data available because the selectional preferences were specific to the
preposition as well as the slot. In this case, the FirstS option did increase precision, although the
difference was not significant.

We used the same data for comparing the ATCMs produced by our system (no pruning) and
those produced using the strategy of pruning WordNet devised by Li & Abe (Li & Abe, 1995; Abe
& Li, 1996). The comparison is shown in the first two rows of table 4.9, for ATCMs obtained for the
object slot without WSD. The pruned version had a higher precision because the items attempted
were easier, this was reflected by a higher baseline. The differences between the precision and
baselines were not significant. The main difference was in the number of root cuts. Li & Abe
style pruning caused more root cuts, because preferences were less readily observed. The SCF

row of this table shows the results obtained when the training data was specific to a SCF. For this
experiment, we used the frame � �	� ������
 and contrasted it with the results obtained using the
data at all direct object slots. There was very little difference. The benefits of being specific to the
������������
 SCF were lost by the reduction in data available for this SCF.

We also obtained ATCMs for the same verb sample, using data from 1.8 million words of
parsed text from the BNC. This was a portion of the same data used to construct lexicon A. Two
lexicons were built, one using GATE (Cunningham et al., 1995) named entity recognition (lexicon
B) and one without proper noun recognition, but which used pattern matching to detect dates
and monetary amounts (lexicon C). The ATCMs for the target set of 30 words were contrasted
on the SemCor WSD task. The results are displayed in the lower part of table 4.9. Proper noun
recognition increased the coverage of the data by reducing the number of verbs with root cuts.
Precision and the precision baseline were consequently lower since the preferences were more
discriminatory and so returned fewer sense labels. Although proper noun recognition did increase
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Table 4.9: SemCor evaluation - ATCMs direct object slot

recall precision MCBL RBL % verbs cut at the root
No pruning 35 48 43 28 0
L&A pruning 34 52 51 28 20
SCF specific 36 48 44 28 0

Training on 1.8 M words
Ignore proper nouns 29 55 45 29 43
PN recognition 31 48 42 28 25

Table 4.10: SemCor evaluation - sample of 395 verbs

model type WSD recall precision MCBL RBL

ATCM none 32 48 44 26
ATCM SPass 34 48 44 26
ATCM FirstS 33 46 43 26
ATCM COMB 33 47 43 26
LLRTCM none 35 49 42 26
PTCM none 35 48 46 26

coverage and provide more discriminatory preferences, we did not carry it forward for further
experiments because of the lengthy computation required for large quantities of data.

We also obtained results for TCMs from 395 verbs. taken from a random sample of 500 sen-
tences. 3 The 395 verbs all occurred in lexicon A with frames involving a direct object slot. Per-
formance on the WSD task was compared for the three model types, ATCM, LLRTCM and PTCM,
acquired for the direct object slot without WSD on the input data. The TCMs all obtained precisions
in excess of MCBL, the largest difference was for the LLRTCM model. WSD of the input data did
not improve performance of the preferences on the WSD task.

These results are hard to compare directly with other researchers evaluating on the SemCor
data because of experimental differences. Resnik (1997) obtained an average of 44.3% accuracy
for object and 40.8% for subject slot using preferences acquired for 100 of the most strongly se-
lecting verbs. Resnik did not allow the assignment of multiple tags, but selected at random from
the senses returned by the system when more than one tag was suggested by the preferences. Ab-
ney & Light (1999) obtained scores using the same training and test data as Resnik. Abney &
Light also selected randomly between multiple senses returned by the system. They obtained an
accuracy for the direct object relationship of 42%. Accuracy increased to 54% when they used
preferences obtained from training on the full set of the BNC. We disambiguated the direct ob-
jects which occurred with 395 randomly selected verbs, rather than verbs with strong preferences.
Verbs selected at random were expected to perform worse than verbs chosen because of their se-

3This is the same set of verbs referred to on page 36 in chapter 2.
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lectional properties. The test data was therefore more difficult and performance was anticipated to
be adversely affected by this. However, this was not the only difference between our experiment
and those of Resnik and Abney & Light which was predicted to affect performance. We permitted
multiple assignment of sense tags and so in this respect our task was easier. The MCBL to some
extent took the possibility of multiple sense selections into account, although this was rather a
stringent baseline. It did not allow for the fact that the TCMs made multiple sense selections only
where these occurred in the same vicinity of WordNet.

SENSEVAL permitted multiple sense selection. This was done by applying a probability distri-
bution over the senses returned for each test item. If no probability distribution was supplied then
a uniform one was used over the sense tags returned. Our system performed comparably with the
other system (OTTAWA) which used only automatically acquired preferences for disambiguation
(Kilgarriff & Rosenzweig, 2000). Performance of our system on the coarse grained noun task
was 69% precision with 20% recall. These results are comparable to those of the OTTAWA system
which obtained 71% precision and 8% recall (Kilgarriff et al., 1998). The random baseline, with
multi-word identification performed at 58% precision and 58% recall on this task.

4.4.4 Task Based Evaluation - Pseudo Disambiguation

For this task, � verb1 noun verb2 � tuples were created where the pair verb1:noun had occurred
in the test data, but verb2:noun had not. The TCMs had to identify which verb was more likely to
occur with the noun.

We evaluated our TCMs on this task since it bears some relation to a structural disambiguation
task. The preference models were used to find the most likely combination between two pairs of
words. In the pseudo-disambiguation task, word pairs are artificially created and the system is
expected to prefer the genuine pairs, for a given slot, to the artificially created ones. In structural
disambiguation proper, the decision is made between argument heads at different slots, using pref-
erences specific to the attachment site, for example of the verb and NP for PP resolution. Those
that have evaluated acquired selectional preferences on a structural disambiguation task have typi-
cally used supervised training data (Abe & Li, 1996; Resnik, 1993a). A structural disambiguation
exercise using unsupervised training data was possible, but direct comparison with a supervised
approach would not have been appropriate. The advantage of doing the pseudo-disambiguation
task was that supervised training data was not required. For structural disambiguation, the output
from the shallow parser could be used for training. However, there were likely to be errors on PP

attachment which would make comparison difficult with systems using semi-automatically parsed
text, like that of the Penn Treebank. The task has also been referred to as pseudo-WSD (Dagan,
Marcus, & Markovitch, 1993; Lee, 1997) since the two verbs can be thought of as two senses of a
pseudo-word formed by combining the two verb forms.

We used the data in lexicon A as training data, and data from a further portion of 8 million
words of parsed text from the BNC as test data. Tuples were selected such that the combination
of the noun with either verb1 or verb2 did not occur in the training data. However, the noun in
isolation had occurred in the training data. Verb1 was required to have occurred in the test corpus
with the noun. Verb2 meanwhile was selected at random according to its frequency distribution in
the test data. The system decided which verb was more likely to have been seen with the noun in



Chapter 4. Evaluation of Automatically Acquired Preferences 107

Table 4.11: Pseudo-disambiguation evaluation

Model WSD Precision Recall
ATCM none 58 55
ATCM SPass 55 51
ATCM FirstS 59 55
ATCM COMB 59 54

PTCM none 58 58
PTCM SPass 55 53
PTCM FirstS 56 56
PTCM COMB 57 55

LLRTCM none 58 58
LLRTCM SPass 59 59
LLRTCM FirstS 59 59
LLRTCM COMB 59 59

the test data on the basis of the preference scores. Precision and recall were calculated from these
decisions. Precision was calculated as the number of times where the system decided correctly,
divided by the number of attempts at a decision. Recall was calculated as the number of times
where the system decided correctly, divided by the total number of instances. Precision and recall
were distinct in this experiment since our system did not make a decision in cases where an item
was not covered by the TCM, or where the score was the same for both verbs. The lower bound for
this experiment was 50%, for both precision and recall. This would be expected if the system made
a random decision. The upper bound was below 100%, but has not been determined. A recall of
100% cannot be expected because the false pairs are generated artificially. It was quite possible
that, on occasions, they were in fact more plausible than the pair actually attested in the corpus.
To determine an upper bound it would have been necessary for lexicographers to decide which
pair was more likely, without recourse to the correct answer. A measure of inter-lexicographer
agreement would also have been required. An upper bound was not determined because of the
substantial human effort required, we simply noted that the system was expected to perform below
the 100% level.

For the experiment, we used the selectional preferences obtained for verbs found in the sample
of 500 hand-parsed sentences with sufficient direct objects (again, the threshold was set at 10
or more) for preference acquisition. We randomly produced tuples according to the procedure
outlined above. Precision and recall figures for the ATCMs, PTCMs and LLRTCMs are provided
in table 4.11. The model types are displayed in this table with the different WSD options. All
experiments were conducted using preferences and data from the direct object slot. The scores for
the ATCMs and LLRTCMs improved slightly with the first sense heuristic, whilst the PTCMs were
slightly worse off with WSD. The WSD options did not give significant differences in terms of
precision and recall.

The differences in performance of the different model types and WSD options were not signif-
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icant. There was a large disparity between our results on this task and those obtained by Rooth
et al. (1999) and Pereira et al. (1993). They obtained results with near 80% accuracy (their system
was allowed to decide in all cases). These were far superior to ours. It is likely that some of
the difference was due to the difference in the size of the training portion. We used the data in
lexicon A, which is built from 10.8 million words of the BNC, whereas Rooth et al. used the entire
BNC (90 million words) for training. Pereira et al. used a 44 million word corpus for training.
Abney & Light (1999) demonstrate a significant improvement on the WSD test when increasing
the size of the training corpus. (Rooth et al., 1999) also restricted the verb and noun lemmas to be
ones which occurred between 30 and 3000 times in a specific relationship in the training corpus.
Pereira et al. used verbs with a frequency between 500 and 5000. We placed no frequency thresh-
old on the lemmas, but the verb1:noun pairs and verb2 were selected according to their frequency
distribution.

The substantial difference in performance of our system to the ones using automatically pro-
duced classifications may not be solely attributed to differences in the training data. Li & Abe
(1996) demonstrated that automatically clustered models were more accurate at the task of struc-
tural disambiguation than models obtained as tree cuts in WordNet. WordNet, meanwhile, permit-
ted better coverage of the data.

4.5 Conclusions

In this chapter, we evaluated our ATCM, PTCM and LLRTCMs, with the various WSD options. We
used both type and token-based evaluation methods, and also performed two task-based evalua-
tions, used by others in the literature.

The acquired preferences covered a considerable portion of the LDOCE restrictions, whilst
also including preferences which were not recorded by the LDOCE lexicographers but were quite
intuitive and plausible. A significant source of error for this type-based evaluation arose from the
difficulty in mapping between LDOCE and WordNet.

Manually tagged examples provided in the verbal entries of CIDE were used for the token-
based evaluation. Since the tokens were not collected from corpus data it was again not expected
that all examples would be covered. This evaluation favoured the more discriminatory models,
those being the LLRTCMs and those incorporating WSD, particularly FirstS. These models provided
a relatively large difference between the CIDE examples that they covered and the random baseline.

The type and token-based evaluation necessitated the use of a threshold to determine coverage
of (i) the LDOCE restrictions and (ii) the CIDE examples. Our TCMs expressed preference on a
continuum, but this was lost in these evaluations. The choice of threshold affected performance
for the LDOCE evaluation, with a higher threshold increasing precision whilst reducing recall. The
task-based evaluations did not require a threshold.

Our preference models performed similarly on the WSD task to those of others. Performance
on the pseudo-disambiguation evaluation, however, was considerably lower than that achieved by
some of the distributionally based classifications reported in the literature. At least some of the
discrepancy was probably due to differences in the training and test data. Interestingly, there are
no other researchers who have used this evaluation for preferences acquired automatically using
a manmade taxonomy, such as WordNet. Li & Abe (Li & Abe, 1996) indicated that higher levels
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of precision can be obtained using automatically constructed models for structural disambigua-
tion. Presumably automatically constructed taxonomies fit naturally occurring corpus data more
accurately. Comparisons of models using automatically constructed semantic classes with models
using manmade resources on the same test suite are needed.

The different model types produced slightly different results from each other, although on the
whole these differences were not significant. The ATCM and PTCM models performed similarly
on the LDOCE and CIDE evaluations. The LLRTCMs showed the largest difference to the baselines
on both the CIDE and the WSD evaluations. The WSD options did produce slightly better results in
some experiments. For example FirstS significantly increased precision in the face of sparse data
at the PP slot. However, the results did not show consistent improvement with WSD of the input
data. The main affect of WSD was to increase the coverage by increasing the specificity of the
TCMs, thereby reducing the number of root cuts.

Using proper nouns provided more discriminatory preferences and increased coverage. But,
given the need to process large quantities of data, we did not pursue this for diathesis alternation
detection. Obtaining the data specific to the SCF did not significantly improve or degrade perfor-
mance. The reduction in noise was accompanied by a reduction in the training data. For diathesis
alternation detection we required preferences specific to SCFs. At least the reduction in training
data was compensated for by the reduction in noise.



Chapter 5

Identifying Diathesis Alternations

5.1 Introduction

This chapter concerns the automatic identification of diathesis alternations. Diathesis alternations
are different ways in which the arguments of a verb are expressed syntactically. They are some-
times accompanied by slight changes in the meaning of the verb. An example of the causative-
inchoative alternation is given by the sentences in example 13 below. In this alternation, the object
of the transitive SCF can also appear as the subject of the intransitive SCF.

(13) a. The boy broke the window.

b. The window broke.

We are specifically concerned with alternations involving NP and PP constituents, since our
selectional preferences can only be applied to these slots. Alternations involving NPs and PPs
can be broadly divided into three categories according to their syntactic behaviour. Firstly, those
in which arguments are optional, and are omitted in one realization, for example the unspecified
object alternation shown in (14) below. Secondly, those in which particular argument types occur
in different slots with different grammatical roles in the alternate frames, an example of this is the
dative alternation shown in 15. In (15a). the argument acting as the ‘recipient’ (the dog) occurs as
the direct object in the double object construction. Whereas in (15b) the recipient appears in the
prepositional phrase. In this example, the argument acting as the ‘theme’ (a bone) occurs as the
indirect object (second object) of (a) but the direct object (first object) of (b). We refer to these as
‘role switching’ alternations (RSAs). And thirdly, those involving both omitted arguments and role
switches, for example the causative-inchoative exemplified above in example 13. In this thesis, we
are particularly concerned with RSAs (with or without omitted arguments). In our experiments, we
have used the syntactic and semantic evidence gleaned automatically from corpus data. We looked
for cases where semantically similar argument heads appeared in different slots in the alternating
syntactic realizations.

(14) a. The boy ate the popcorn.

b. The boy ate.
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(15) a. She gave the dog a bone.

b. She gave a bone to the dog.

The next section (5.2) briefly introduces a little of the background literature on alternations
and some issues relating to their computational treatment. Section 5.3 motivates the need for
automatic identification of verbal participation. We emphasize why alternations are interesting
from a theoretical perspective and what practical uses can be made of them. In section 5.4, we
look at related work on the acquisition of alternations and point out the difficulties involved. We
outline the approaches we took for automatic identification of alternations in section 5.5. Our
methods combine automatically produced SCFs and preferences. Levin (1993) provides a com-
prehensive list of alternations, alongside a manually produced classification of verbs according to
their participation in these alternations. We define the scope of our experiments in terms of this
classification in section 5.6. We then look at automatically acquired SCF data in section 5.7 to
show the alternations which we were able to examine because we had sufficient data. Section 5.8
contains our experimental results using our automatic methods and 5.9 contains a summary and
our conclusions.

5.2 Some Background on Diathesis Alternations

Alternations relate to both the syntax and semantics of natural language. Transformational gram-
marians have studied alternations from a syntactic perspective. They have investigated the ways
in which the same underlying thematic role is expressed in surface position (Radford, 1989; Fill-
more, 1970). Radford took the view that the same set of selectional restrictions should apply in
all surface positions of the same underlying thematic role. There are a number of problems with
this. It is not easy to manually identify selectional restrictions in terms of abstract classes, without
explicitly listing the nouns themselves (Fillmore, 1970). Also there are many cases where par-
ticipation depends not only on the verb, but on the argument too. Verbs which alternate do not
do so for all argument heads (Montemagni, Pirrelli, & Ruimy, 1995). In example (16) below, the
transitive variant of the causative-inchoative alternation for ring is unlikely to occur in a corpus
of English with the argument alarm clock in the object slot. Meanwhile, the intransitive variant is
quite plausible.

(16) a. *The boy rang the alarm clock.

b. The alarm clock rang.

Thus, a particular combination of argument and predicate may preclude participation. Fur-
thermore, some predicates will not participate in an alternation at all, even though they occur with
one of the required syntactic forms. Thus, alternations are not fully productive. They were de-
scribed as semi-productive by Briscoe & Copestake (1996) who argued that it is not feasible to
enumerate the conditions under which alternations apply when handling them in a computational
lexicon. Sanfilippo (1994) used MRDs for determining participation for specific lexical entries.
However, MRDs are manmade resources, which are open to human error and are not tailored for
any particular corpus. MRDs also lack the frequency information that is available when acquiring
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lexical information from corpora. Certainly, corpus evidence plays an important role in the study
of productivity issues and the interaction of argument and verb on verbal participation.

Alternations have often been described with lexical rules in lexicalist grammar formalisms,
such as Head-Driven Phrase Structure Grammar (HPSG) (Pollard & Sag, 1987, 1994). Lexical
rules have an input (base form) and output (derived form). Briscoe & Copestake (1996) looked at
semi-productive lexical rules generally, including sense extensions such as vehicle-name � verb-

of-motion as well as verb alternations. They advocated the use of probabilities to help control the
application of the lexical rules. Probabilities were used for productivity estimates to allow for the
semi-productive nature of lexical rules. The probabilities were recommended to prevent lexical
rules being applied in all cases having the base form, and to predict the likelihood of a previously
unseen case. The motivation behind using probabilities was in line with the Gricean Maxim of
Manner: there is an implicit understanding between speakers not to use rare or abnormal forms.
Users of a language will more readily produce and expect more commonly used forms. The paper
illustrated how probabilities for constraining the application of lexical rules might be estimated.
This was done using attested evidence for the productivity of a lexical rule to help provide a
probability estimate for unseen forms. Crucially the method relied on observing some occurrences
of the lexical rule and estimating the probabilities from these observations.

The productivity of a lexical rule A � B was calculated by Briscoe and Copestake as :

Prod � rule ��� num � B �
num � A � (5.1)

This was a type ratio, for lexical entries, where num(A) was the number of attested lexical
entries which matched the input, or base form, of the lexical rule and num(B) was the number
of entries observed to match the output, or derived form. Montemagni & Pirrelli (1995) showed
that, for the causative-inchoative alternation at least, there does not seem to be a unique direction
between base and derived forms for all verbs. In this thesis, we remain neutral to the issue of
directionality of the alternations and do not rely on the notion of a base entry.

There is a widely held view that the meaning of a verb and its participation in alternations
are connected (Pinker, 1989; Jackendoff, 1990; Levin, 1993; Levin & Rappaport Hovav, 1996).
However, the exact aspects of meaning which give rise to the syntactic behaviour are subtle and
often rather elusive. Pinker (1989) and Jackendoff (1990) looked at alternation phenomena from
a semantic perspective. They were interested in how the syntactic realisations of a predicate are
determined by its meanings. Their approaches hinged on linking rules which mapped semantics
to syntactic realizations.

Jackendoff did this using what he termed ‘lexical conceptual structures’ (LCSs) as the basis for
defining semantic behaviour. In this framework, basic semantic categories such as Thing, Event

and State were combined using formation rules. Thematic roles were an important part of this
machinery. They tied the argument positions in a LCS to the NPs in the syntactic expression. A
mapping was established between LCSs and the syntactic argument structures. Verbs with similar
meanings could occur in the same sorts of LCSs. These LCSs were in turn realised as syntactic
structures characteristic of the verbs. The framework included notation to allow alternating forms
to be related at the LCS level.

Pinker looked at argument structure from a learning perspective. He looked at the way children
learn generalisations, construed as lexical rules, so as to produce new argument structures in lan-
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guage. The argument structures of verbs were said to be projected from the underlying semantic
structure of the verb via linking rules. Pinker stipulated that the lexical rules act on the semantic
structures, producing a change in meaning. The change in semantic structure gives rise to a cor-
responding change in argument structure. Semi-productivity occurs because, for some verbs, the
semantic change does not tally well with the original semantic structure of the verb, and therefore
the lexical rule cannot be applied. He proposed a common semantic component (‘a thematic core’)
which is responsible for a group of verbs behaving in the same way.

The link between the semantics and syntax of alternations is of great interest. If some seman-
tic components can be identified with syntactic behaviour then this opens up the possibility of
learning something about the semantics of an unknown word by observing its syntactic behaviour.
Conversely, if one knows enough about the semantics of a verb then one can generate new forms,
regardless of whether they have been seen before or not. However, identifying these semantic
components is far from straightforward (Levin & Rappaport Hovav, 1996).

Levin (1993) consolidated diathesis alternation research by designing a framework which en-
compasses both the syntactic behaviour and the underlying semantics. She has produced a list of
alternations involving NP and PP constituents and has manually classified over 3000 verbs accord-
ing to their participation in these alternations. Alternations involving other complement types,
such as sentential complements, are not included. The verb class taxonomy features 191 verb
classes and provides the key semantic and syntactic characteristics of each class. The verb classes
show considerable semantic cohesion, providing evidence for the link between syntactic behaviour
and meaning. Levin’s classification is extensive enough for practical use and is now used by a wide
number of NLP researchers (Dorr & Jones, 1996; Dang, Kipper, Palmer, & Rosensweig, 1998; Mc-
Carthy & Korhonen, 1998; Stevenson & Merlo, 1999; McCarthy, 2000).

Until recently, the NLP research concerned with alternations has concentrated on issues of rep-
resentation of lexical rules (Sanfilippo, 1996, 1994; Briscoe & Copestake, 1999; Bredenkamp,
Markantonatou, & Sadler, 1996), productivity issues (Pirrelli, Ruimy, & Montemagni, 1994;
Montemagni et al., 1995; Montemagni & Pirrelli, 1995; Briscoe & Copestake, 1996) and cross-
linguistic studies (Pirrelli et al., 1994; Nicholls, 1994, 1995). This thesis is concerned with the
automatic identification of RSAs. In the next section, we consider why such information is useful
for NLP. Before moving on, we note that theoretical linguistic research on alternations could also
benefit from the use of tools capable of automatically suggesting new participants from corpora.
Identifying new participants might help narrow the search for the components of meaning that
drive the syntactic behaviour, and for the necessary and sufficient conditions for the alternating
forms.

5.3 Motivation

In this section, we describe some of the ways in which alternations have been used for NLP pur-
poses. These demonstrate the need for information concerning alternations to be stored in a com-
putational lexicon.

Diathesis alternations have been suggested as a basis for improving lexical acquisition (Ribas,
1995a; Korhonen, 1997; Briscoe & Carroll, 1997). Korhonen (1997) proposed using diathesis
alternations in SCF acquisition. The goal of her work was to improve the statistical filter of the



Chapter 5. Identifying Diathesis Alternations 114

SCF acquisition system of Briscoe & Carroll (1997). This is the same SCF acquisition system that
we have used in this thesis. The statistical filter was intended to decide whether a SCF observed
for a particular verb was genuine or not. This was necessary because a SCF may be detected with
a particular verb because of noise, for example arising from parser errors. To see how diathesis
alternations might improve the SCF acquisition process we need to delve into the details of the
statistical filter.

In the original system (Briscoe & Carroll, 1997), the filter works using hypothesis testing on
binomial frequency data. This is based on the binomial filter devised by Brent (1993) for SCF

acquisition. The observations of verbs occurring with SCF classes in the corpus are construed as a
binomial frequency distributions. Binomial distributions are usually exemplified using a number
of coin flips. The outcome of each flip is one of two alternatives (heads or tails). The number of
flips (n) is fixed. The probability of a particular outcome with probability p occurring m times out
of n trials is given by the binomial distribution in equation 5.2:

P � m � n � p � � n!
m! � n � m � ! pm � 1 � p � n � m (5.2)

The probability of the event happening m or more times is:

P � m � � n � p � �
n

∑
i � m

P � i � n � p � (5.3)

In the SCF acquisition scenario, the trials are the occurrences of a verb (v) in the corpus used
for acquisition. The outcome of the trial is either an occurrence of v with a particular SCF (i),
or an occurrence with some other SCF. The probability p � v � i � is the probability that v does not
legitimately occur with i, yet is observed with i in the corpus. P � m � n � p � v � i � � is the probability
that SCF i was seen m times with v in a corpus having n occurrences of v, when this was due to
noise. This can be used in hypothesis testing to see if the occurrence of i with v has occurred more
than would be expected by chance. A threshold is set on the value P � m � � n � p � v � i � � , usually less
than or equal to 0.05, to give a confidence level that sufficient occurrences of i have been observed
with v for this to be a genuine SCF for v. The null hypothesis is that v does not legitimately occur
with i. The alternative hypothesis is that v does occur with frame i. The null hypothesis is rejected
if the number of occurrences of i with v exceed the threshold determined by P � m � � n � p � v � i � � .

An estimate is required for p � v � i � . Briscoe & Carroll estimate p � v � i � using information from
the ANLTdictionary and from the Susanne corpus (Sampson, 1995). The calculation is shown in
equation 5.4. The estimate is dependent on SCF, but is irrespective of the verb.

p � v � i ��� � 1 �

� ANLT verbs in class i �
� ANLT verbs � � � patterns f or i �

� patterns � (5.4)

The first term estimates the probability of a verb not occurring with SCF i. The second term
estimates the probability of the syntactic pattern associated with SCF i occurring.

Korhonen (1997) used diathesis alternations to improve the filtering process. The basic idea
was to make use of correlations between SCFs because of diathesis alternations. When acquiring
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SCFs automatically, one does not know before hand the correlations for a specific verb. However,
one might be prepared to use a guess at the correlations from all verbs taken collectively. Korhonen
did this using the SCF entries in the ANLT dictionary. Nine alternations from the linguistic literature
were used, and also other rules were automatically identified by finding correlations between the
SCFs in ANLT. The rules were directional rules of the form:

SCF class A � SCF class B

One such rule was for the intransitive class (22), with the subcategorization frame [����� ],
alternating with the transitive class (24), which has the subcategorization frame [ �	� ���	� ].

class 22 � class 24

Probabilities were estimated for each alternation rule using the number of verb types in both A
and B divided by the number in A. These probabilities were used to alter the value of the threshold
for SCF A which was used for hypothesis testing. If a SCF did not occur with a verb more than this
threshold, then the occurrence of the SCF with this verb was assumed to have arisen because of
noise. The alternation probability was used to lower the threshold for the SCF on the LHS in cases
where both SCFs were evident. This was done using the formula in equation 5.5. If the SCF on the
left hand side of the alternation rule occurred with a verb, but the SCF on the right hand side did
not, then equation 5.6 was used to increase the threshold for the SCF on the LHS.

New Threshold � P � m � � n � p � v � i � � � � 1 � AlternationProbab � (5.5)

New Threshold � P � m � � n � p � v � i � � � � 1 � AlternationProbab � (5.6)

There were a number of parameters in Korhonen’s experiments, but overall the the alternation
probabilities were shown to improve the performance of the system. In subsequent work (1998),
Korhonen used alternations, again taken using the SCF entries in ANLT, to directly alter the prob-
ability of a SCF given a verb. Identifying alternations from a corpus, rather than from the SCFs
entries in ANLT, might improve SCF acquisition further. Verb specific evidence would be useful in
determining the entries for an individual verb. Evidence collected over the entire set of verbs can
be used, alongside attested evidence, when verb specific information is not available.

Alternations can also be used for the lexical acquisition of selectional preferences (Ribas,
1995a). They permit us to relate alternative forms together when collecting the argument heads
occupying a particular relationship with the predicate. Ribas looked at the passive alternation for
present. The passive alternation was selected since this is easily detected, and present was selected
since it occurs with similar relative frequencies for the two alternating SCFs. This alternation is
shown in example 17.

(17) a. The doctor presented the issues.

b. The proposal was presented by the director.
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Ribas obtained selectional preferences from the data in the WSJ for the subject and object
slots of present. He did so in three different experiments. In the first, the passive alternation
was ignored. Thus, using our example, doctor and proposal would have both contributed to the
selectional preferences of the subject slot. In the second experiment, the passive alternation was
detected and argument heads from different semantic roles were separated. Thus only doctor from
our example would have been used for acquiring subject slot preferences. In the third experiment,
the passive alternation was detected and applied. Argument heads having the same functional
relationship (semantic role) with the verb were combined. Thus, doctor and director would have
been combined. The preferences acquired from the third experiment increased precision and recall
on a WSD task, compared to the first experiment. Simple detection of the passive (experiment 2)
reduced precision and recall. This was explained by the reduction in the volume of data available.

Another use of alternations in SCF acquisition is for the recovery of full predicate argument
structure (Briscoe & Carroll, 1997). Boguraev & Briscoe (1987) pointed out that participation in
alternations can help in determining control options for predicates. They can help classify a verb
as equi or raising. For example, a raising verb such as believe is a two place predicate. Meanwhile,
persuade is an equi verb (a three place predicate). They share the SCF associated with example
(18a) below. Believe also takes (b) whilst persuade takes (c). Thus the control classification of (a)
is determined by the occurrence of the alternative form.

(18) a. I believed/persuaded Bill to be a good man. [��������� � � � ��� � � ����� ��� ]

b. I believed Bill was a good man. [ �	���	� 
���
 � ]

c. I persuaded Bill John was a good man. [����������� 
���
�� ]

Alternations involving verbal complements are not tackled in this thesis. However, given that
there are correlations between alternations (Levin, 1993), techniques that identify alternations
involving NPs and PPs might help in establishing participation in other types.

Alternations provide a means of adding generalisations to the lexicon. This is preferable to
enumerating cases individually for two reasons. Firstly, it produces a compact lexicon in which
connections between alternating forms of the same verb are transparent. Secondly, generalisations
over groups of verbs can be readily be observed. Diathesis alternations are typically implemented
in the form of lexical rules, as in lexicalist grammar formalisms such as HPSG (Pollard & Sag,
1987, 1994). What is required is a way of determining which verbs participate in which alterna-
tions.

The diathesis information required for a verbal entry will vary, depending on the task. At a
minimum it should include a reference to the alternations which the verb participates in. Frequency
information for the alternating variants might also be useful. This could be used for estimating
productivity, in a scheme such as that described by Briscoe & Copestake (1996). Their estimation
of productivity, given in equation 5.1 on page 112, rests on the stipulation of the base and derived
form for an alternation. In this thesis we do not take up the issue of directionality. Instead we
observe data for both alternating variants. We could use our system for determining participation
within Briscoe & Copestake’s scheme. To do this we might define productivity as the number of
verbs where participation is identified, divided by the number of verbs which have at least one of
the alternating forms. There are other ways suggested for calculating productivity. Lapata (1999)
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estimated productivity using the verb classes listed by Levin (1993). She used the ratio of verbs
from a particular Levin class found to alternate to the number of verbs in the class regardless of
participation.

Levin’s research using diathesis alternations has demonstrated the appeal of alternations as
a means for classifying verbs. This large scale classification was not intended to be exhaustive.
Extending it with new participants would help others using the classification for their own re-
search. Additionally, the classification lends itself to predicting unseen syntactic behaviour where
a new item can be unambiguously classified from seen behaviour. Parallels drawn between the
classification and WordNet (Dang et al., 1998) might help in the semantic classification of a new
predicate. The appropriate WordNet class of a verb might be determined by first using syntac-
tic evidence to classify it within Levin’s taxonomy. Links between this taxonomy and WordNet
might then be used to classify the verb in WordNet. Continuing the classification manually would
require substantial human effort. Automatic identification of alternations would be a useful tool
for automatic, or even semi-automatic, classification.

Different diathesis alternations give different emphasis and nuances of meaning to the same
basic content. These subtle changes of meaning are particularly important in natural language
generation, according to Stede (1998). Stede considered the changes to the aspectual category (or
Actionsart) of a verb using the following four examples: 1

(19) a. The engine drained.

b. He drained the engine.

c. The oil drained from the engine.

d. He drained the oil from the engine.

In his scheme, alternations which affected the denotation (truth conditions) of a verb were
termed extensions and treated as directional. He determined a base form of each alternation and
application of an alternation added meaning to the base form. In his example 19, (c) was the base
meaning denoting the activity, (a) was the resultative reading, which indicated that the engine ends
up empty, (d) was introduced by the causative extension and (b) was produced by a combination of
the resultative and then causative extensions. These subtle changes in meaning can be exploited in
generation provided that the link between the rules and meaning is specified and that the possible
alternations for each verb are provided. It is the latter prerequisite that our work addresses.

Thus there are theoretical and practical uses of alternations in linguistics and NLP. Incorpo-
rating this sort of information into lexicons has been the subject of previous research (Briscoe &
Copestake, 1999; Bredenkamp et al., 1996; Sanfilippo, 1994). Kohl, Jones, Berwick, & Nomura
(1998) described how WordNet has been manually supplemented with selectional restrictions and
Levin classes. Automatic identification of participants has however only recently received atten-
tion. This is the subject of our next section.

1These are abbreviated here to remove superfluous text which cannot be contrasted.
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5.4 Related Work

In this section we describe methods aimed at classifying verbs according to their participation in
alternations. First of all we describe two approaches (Dang et al., 1998; Dorr & Jones, 1996)
which extend Levin’s classification. These relate indirectly to identification of the verbs involved
in particular alternations. We then outline four approaches (Resnik, 1993a; Schulte im Walde,
1998; Stevenson & Merlo, 1999; Lapata, 1999) which, like our approach, classify verbs with
reference to corpus evidence.

In Levin’s classification a verb can belong to more than one class. This stands to reason as the
verbs often have more than one sense. Levin does not explicitly label the sense of a verb when it is
listed as a class member with a predefined sense tag, but she lists the verbs with other participants,
and the class is typically named using a prototypical member. For example, strike is a member of
two of Levin’s verb classes. It is a member of the hit verbs class, along with other members such
as bang, beat and of course hit. It is also a member of the amuse verbs class, along with other
members such as amuse, entertain and provoke. These two classes clearly signify two distinct
senses of strike illustrated by example 20, where (a) is an instance of the hit sense and (b) is an
instance of the amuse sense.

(20) a. The man struck him with an iron bar.

b. She was struck with the idea.

Dang et al. (1998) modified Levin’s classification by adding new classes to make the entire set
of classes mutually exclusive i.e. so that there was no overlap between classes. The new classes
were termed ‘intersective classes’ and contained verbs which belong to more than one of Levin’s
classes. The intersective classes were produced by a procedure that found verbs which appeared
in the same set of classes in Levin’s taxonomy. Some of these sets of classes became intersective
classes. An intersective class was formed where the set of classes contained at least three verbs
which occurred in each of the classes in the set. As an additional constraint, the intersective class
was only retained provided that it was not subsumed by another intersective class which covered
a wider set of classes from the original scheme. Verbs in Levin’s index were then reclassified
into these intersective classes, provided that they occurred in each of the classes that made up
the intersection. On doing this the verb was removed from the original classes that comprised
this intersective class. The reclassification had a finer granularity than Levin’s scheme and the
syntactic behaviour of class members was less diverse. Furthermore, the semantic component of
the intersective classes was clearer than in Levin’s classification.

Dang et al. demonstrated links between the new intersective classes and the classes in Word-
Net. Some intersective classes displayed the same sort of distinctions that WordNet subclasses
(hyponyms of a common parent) do. For example, two subclasses of cut, separating into bits

and incision without separation, were consistent with membership versus non-membership of an
intersective class containing the verb split. The introduction of WordNet emphasized the semantic
relationships between verbs in Levin’s scheme. Other intersective classes demonstrated regular
sense extensions that are not recorded in WordNet. The intersective classes also allowed Dang
et al. to identify cross-linguistic generalisations (English-Portuguese) where translations of verb
forms participate in the same alternations.
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Dorr & Jones (1996) also highlighted the multiple membership of verb forms in Levin classes.
They too wished to show that the relationship between semantics and syntactic behaviour is clearer
and more coherent if this is resolved. Instead of increasing the granularity of classes, they in-
creased the granularity of the items being classified, They quantified syntactic behaviour shared
by class members and showed that if verb senses were used, rather than verb forms, the shared
syntactic behaviour drastically increased.

Dorr & Jones defined the senses for a verb by the Levin classes that the verb belonged to.
Thus, each verb sense was defined as a verb form and Levin class combination. For example,
the verb cut belonged to seven classes and was therefore defined with seven senses. One of these
classes was the split class, which gave the sense: ‘cut:split’.

Dorr & Jones characterised syntactic behaviour using parses of the positive and negative ex-
ample sentences provided by Levin for each class. These syntactic patterns comprised the major
categories within the sentence, including any prepositions. For example, Tony broke the vase to

pieces provided the pattern [�����������	��� � ��� ]. Table 5.1 provides some further examples for
three of the classes containing cut. The first column provides the class name and the second col-
umn lists a couple of members. The third column displays a few of Levin’s example sentences and
the fourth gives the corresponding syntactic pattern for the example sentence in the third column.

Dorr & Jones conducted two experiments on the shared syntactic behaviour of class members.
One was referred to as ‘verb-based’ and used verb forms and the second was referred to as ‘class-
based’ and used verb senses. For the verb-based experiment, syntactic patterns were collected
for each verb from all the classes that the verb belonged to. So for example, all the patterns in
the fourth column of table 5.1 would have been included for the verb cut. 2 For the class-based
experiment, only the patterns from the specified Levin class were collected for a particular verb
sense. Thus, only the patterns belonging to the final row 3 would have been collected for the
cutbuild sense.

For the verb-based experiment, any set of syntactic patterns shared by one or more verb form
was termed a ‘syntactic signature’. The verbs which matched each syntactic signature were placed
together in a syntactic grouping. The overlap between the members of this syntactic grouping
and the members of each Levin class (a semantic grouping) was calculated. The overlap was
the number of overlapping items divided by the average number of items in the Levin class and
the syntactic grouping. For the class-based experiment, the same procedure was followed except
that the syntactic signatures were obtained using the syntactic patterns collected for verb senses,
rather than the verb forms. For the verb-based experiment only 6.3% of the 191 Levin classes had
complete overlap with the syntactic groupings. In contrast, for the class-based experiment 97.9%
of the Levin classes overlapped with the syntactic signatures for the verb senses. These results
demonstrated that the syntactic behaviour of the members of Levin’s classes is highly correlated
with their membership, provided that multiple membership is handled by treating occurrences of
the same verb form in several classes separately.

Dorr & Jones went on to propose a method to classify new verbs within Levin’s classification.
The system used both WordNet and LDOCE. A set of LDOCE grammar codes was specified for

2Further examples given by Levin for the three classes in figure 5.1 and the four other classes containing cut would
have also been included. These are not listed in this table because of the lack of space.

3Again, these are not all listed in this table.
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Levin Class some verb members some of Levin’s examples syntactic pattern
cut cut, snip Carol cut the bread � ��������� 


Carol cut at the bread ��������������� � � 

*The bread cut * � �����	


split break, cut I broke the twig off the branch �������������	��� � � � � 

The twig broke off the branch � ��������� � ��� � � 


build carve, cut Martha carves toys � �	��� �	��

Martha carves � �	����

Martha carved the baby a toy �������������	��


Table 5.1: Dorr and Jones’ syntactic characterization of Levin classes

each of the Levin classes. The synonyms of the new verb were found within WordNet. The LDOCE

grammar codes were found for both the new verb, and all the Levin classes that the synonyms
belonged to. The Levin class was selected that has the closest match of LDOCE grammar codes
to those of the new verb. In the event that there were no synonyms in WordNet that were also in
Levin’s classification, or there was a mismatch between the LDOCE codes for the new verb and
those for the Levin classes, then Levin’s system was simply augmented with a new class.

These experiments are of interest because they show the overlap between the syntactic aspects
of Levin’s classification and the semantic nature of her classes. They demonstrate how to extend
this classification, with new classes for accuracy (Dang et al., 1998), and with new members and
classes to increase coverage (Dorr & Jones, 1996). Crucially, extending the classification with
new members using the approach of Dorr & Jones is dependant on manmade MRTs and MRDs.
What is needed is a way of classifying new members when the information is not provided in a
manmade resource. Using corpora by-passes reliance on the availability and adequacy of MRDs.
The research of Resnik (1993a), Stevenson & Merlo (1999), Lapata (1999) and Schulte im Walde
(1998) involved the classification of individual verbs according to corpus evidence.

Resnik (1993a) looked at the broad category of alternations in which direct objects are omitted,
these are referred to by Resnik as implicit object alternations. He demonstrated a relationship
between his measure of selectional preference, given in section 2.12 of this thesis on page 27, and
the behaviour of verbs with regard to this alternation. Candidate verbs were selected which could
occur with a direct object. These were manually classified as participants or not with help from
the Collins COBUILD English Language Dictionary (Sinclair, 1987). Resnik then demonstrated
a significant relationship between the selectional preference of a verb and its participation in the
implicit object alternation for 34 test verbs. This finding supports the theoretical view that there is
a connection between the capacity to omit an object and the ease with which the object’s properties
are inferred.

Resnik went on to show a correlation between a verb’s selectional preference and the frequency
with which it omits its objects. To do this he manually analysed 100 occurrences of 33 of the test
verbs.4 From this analysis, he determined the frequency of the implicit object construction. In the
majority of cases, verbs with strong selectional properties had a higher number of occurrences of

4He excluded have for this experiment.
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the implicit object construction than verbs with weaker selectional preferences. Although there
were cases where verbs with strong selectional preference did not omit their objects, there were
no counter examples of verbs with weak selectional preference omitting their objects frequently.
This experiment showed that the ease of inference of the omitted object is a necessary condition
for the construction.

In a third experiment, Resnik attempted a sub-classification of the object drop phenomena
using his measure of selectional preference. The results were only significant for one out of two
experiments, and so the evidence was not conclusive.

Stevenson & Merlo (1999) used syntactic and lexical cues for identifying verbal participation
of 60 verbs in three verb classes, 20 verbs in each class. The verb classes were the unergative verbs,
unaccusative verbs and ‘object drop’ verbs (i.e. those that take the implicit object construction).
These three classes were chosen because they all involved a change in transitivity and a few well
defined features can distinguish the three groups. The three classes are illustrated in the following
examples:
Unergative:

(21) a. The boat floated over the lake.

b. The girl floated the boat over the lake.

Unaccusative:

(22) a. The sugar dissolved in the liquid.

b. The cook dissolved the sugar in the liquid.

Object Drop:

(23) a. The boy ate the food.

b. The boy ate.

Unergatives, like float are action verbs whose transitive form is causative, the action is caused
by the subject and the subject of the intransitive becomes the object of the intransitive (Levin
& Rappaport Hovav, 1995). Unaccusatives, like dissolve are change of state verbs where the
transitive form is causative. Object drop verbs, on the other hand, do not have a causative form.
The object is simply optional and is not present in the intransitive alternate.

Stevenson & Merlo used four linguistically motivated features to distinguish these groups.
For example, unergative verbs are reported to be rare in the transitive form. These features were
identified in the corpus using automatic POS tagging and parsing of the data. The features were:

1. VBD - main verb vs past participle

2. INTR - transitive vs intransitive use

3. ACT - active vs passive

4. CAUS - causative vs non-causative
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The 60 verbs were manually selected from Levin’s classification according to two criteria.
Firstly, they were chosen by virtue of having sufficient frequency in a combined corpus (from the
Brown and the WSJ) of 65 million words. Secondly, only verbs having one predominant intended
sense in the corpus were used. Scores for the four features were obtained for the 60 verbs in
the corpus. Relative frequency counts were used as scores for the VBD, INTR and ACT features.
The frequency for the VBD feature was obtained for each verb using the relevant POS tag. The
INTR feature was detected by searching for a nominal group after the main verb token. The ACT

frequency score was obtained using the POS tag and the preceding auxiliary: be and the past
participle tag signified a passive token. The CAUS score was calculated using the lemmas at the
subject and direct object slots of the WSJ parses. The score was a ratio between the number of
lemmas which occurred at both slots (duplicates included) divided by the number of lemmas in
the two slots put together. The counts were normalised so as to give a score on a scale of 1 to 100
for each feature. The data for half of the verbs in each class was subject to manual scrutiny, after
initial automatic processing. The rest of the data was produced fully automatically. The relative
frequencies for the four features were then used to classify the four verbs automatically. A label
was manually attached to each cluster using the class of the majority of verbs in the automatic
cluster. The accuracy of automatic classification was 52% using all four features, compared to a
baseline of 33%. If only the VBD, INTR and CAUS features were used the accuracy increased to
66%. All other combinations of features which were tried achieved accuracy levels between 45
and 54%. It would be interesting to know the difference in performance between the verbs for
which human intervention was allowed, and those where the process was fully automated.

Stevenson & Merlo also used a supervised algorithm to further investigate the effect of the
feature combinations. A supervised algorithm was used to avoid problems associated with manual
labelling of the clusters. They obtained decision trees from the supervised data sets. In this case,
the best results were obtained using all four features. It was possible to see the reduction in
accuracy associated with removing each of the features in turn. Features that strongly correlated
with one another were shown to affect accuracy least.

Lapata’s research (1999) used both syntactic and semantic information to identify participa-
tion in diathesis. She aimed to investigate the extent to which alternations are attested in corpus
data. She experimented with the dative (see example 15 above) and benefactive alternations (see
example 24 below) using the entire BNC; 100 million words of written and spoken text. Lapata’s
strategy was to identify participants using a shallow parser and various linguistic and semantic
cues. PP attachments were resolved using the lexical association score proposed by Hindle &
Rooth (1993). Compound nouns, which could be mistaken for the double object construction,
were filtered using the log-likelihood ratio test. The semantic cues were obtained by manual anal-
ysis. Lapata found that 81.5% of a sample of benefactive PPs could be categorized as animate,
collective or denoted locations. She identified the corresponding WordNet classes and used these
to identify benefactive PPs. The relative frequency of a frame for a verb, compared to the total
frequency of the verb, was used for filtering out erroneous frames.

(24) a. She left a note for Duncan.

b. She left Duncan a note.
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Recall and precision figures against a gold standard were not given for identification of par-
ticipation. The emphasis was on the phenomena actually evident in the corpus data. From the
corpus data, many of the verbs listed in Levin as taking an alternation were not found to have this
alternation. This amounted to 44% of the verbs for the benefactive, and 52% for the dative. These
figures only took into account the verbs for which at least one of the SCFs was observed. 54% of
the verbs listed for the dative and benefactive by Levin were not acquired with either of the target
SCFs. Conversely, many verbs not listed in Levin were detected as having an alternation using
Lapata’s criteria. Manual analysis of those verbs that are not in Levin revealed 18 false positives
out of 52 candidates.

Lapata went on to use the relative frame frequencies to provide an estimate of the productivity
of an alternation, for a semantic class, using a ratio based on that given in equation 5.1 devised by
Briscoe & Copestake (1996). Briscoe & Copestake proposed dividing the number of verb types
having entries in a lexicon matching the RHS of a lexical rule by the number matching the LHS.
This was intended to indicate the ratio between the verbs that do participate and those that are
potential candidates. Instead, Lapata used Levin’s classification to define the possible candidates
for an alternation. Productivity was calculated as in equation 5.7. The calculation is with respect
to an alternation (A) and for the verbs in a specified Levin class (classX). This is the ratio of verbs
from the Levin class automatically identified as participating, divided by the number of verbs in
the class regardless of participation.

productivity � A � classX � � � verbs � classX
�

verbs identi f ied with A �
� verbs � classX � (5.7)

Lapata also used the frequency data to quantify the ‘typicality’ of an alternation, for a specified
verb or verb class. The typicality measured the bias of the verb towards either of the frames
involved in the alternation. Where there was no particular bias, the alternation was said to be
typical for the verb. Lapata described this as the conditional probability of one particular frame
given the verb, see equation 5.8. Lapata noted that, in her data, only two frames were involved
in the denominator. This was because there were only two frames in the alternations studied.
Her typicality measure was a proportion between the frequency of one frame and the sum of the
frequencies of all frames involved in the alternation. However, she did not say how to determine
which frame should be used for the numerator. This is an important issue. It is not obvious which
form is the base form or, indeed, if any form is a base form (Montemagni & Pirrelli, 1995).

p � f ramei � verb ��� freq � f ramei � verb �
∑n

j � 1 freq � f rame j � verb � (5.8)

Schulte im Walde (1998) used automatically induced SCFs and selectional preferences to clas-
sify verbs according to their alternation behaviour. She acquired the SCF information using the
statistical parser of Carroll & Rooth (1998). From this she obtained maximum probability parses
for 5.5 million sentences of the BNC. She experimented with 88 SCFs which occurred more than
2000 times in the parses. The lexical heads were included in the parses, and these were used to ob-
tain selectional preferences in WordNet, in the manner proposed by Ribas (1994, 1995b), which
we outlined in section 2.3.1 in chapter 2. The preferences were collected at top level WordNet
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classes. These classes were selected manually to give a high level of generalisation. Schulte im
Walde then performed two different clustering algorithms on verbs with respect to the SCF data,
each both with and without the selectional preference information. The first clustering algorithm
was an iterative one, and relative entropy was used to compare the SCF distributions. The second
method was the ‘latent-class’ EM-based algorithm proposed in Rooth (1998), and used in Rooth
et al. (1999), which we described in section 2.2.2 of chapter 2.

Schulte im Walde evaluated the automatically induced clusters in terms of their agreement
with Levin’s classification. Recall was the percentage of verbs correctly assigned to a cluster
which was a subset of the appropriate Levin class, compared to the total number of verbs which
were clustered (153). Precision was the percentage of verbs which appeared in the correct cluster,
compared to the number of verbs which appeared in any cluster. The iterative method achieved
better results: 61% precision and 36% recall compared to 54% precision and 38% recall for the
latent-class method. The latent-class method was, however, able to filter out multiple senses,
whilst the iterative algorithm could only deal with verb types. These results were obtained using
only SCF information. Surprisingly, adding the selectional preference information decreased pre-
cision and recall with both clustering algorithms. For example, for the iterative clustering, recall
dropped from 36% to 20% with the selectional preference information, and precision fell from
61% to 38%. Schulte im Walde suggested that some work should be done to improve the choice
of the conceptual classes in which the selectional preferences are represented. This should be done
so that the classes representing the selectional preferences are more representative of the tokens
occurring in the corpus data.

The work by Resnik, Stevenson & Merlo, Lapata and Schulte im Walde that we have just
been considering all relates to the identification of verbs participating in diathesis alternations.
Resnik’s approach made use of a theory underpinning the implicit object construction. That verbs
are licenced to omit their objects where the properties of those objects can easily be inferred.
This is a useful means of identifying verbs which take the implicit object alternation. It cannot be
transferred for use in identifying RSAs, however, it would be extremely useful alongside techniques
for identifying other alternations.

The approach of Stevenson & Merlo hinges on the identification of linguistically motivated
features that are relevant for the verb classification required. Such features were identified for
the unergative / unaccusative / object drop distinctions. These features can be automatically de-
tected in corpus data. Manual intervention was performed on the data for half the test verbs. The
portability of this approach to new verb classes is dependent on the selection of the appropriate
linguistic knowledge. Nevertheless, linguistically motivated features which act as salient cues for
participation might easily be combined with methods requiring less a priori knowledge.

Lapata used both semantic and syntactic information to identify verbal participation in the
dative and benefactive alternations. She, like Stevenson & Merlo, used linguistic heuristics for
automatically identifying the alternations in corpus data. She went on to use her data for estimating
the productivity of an alternation (using the corpus evidence for verbs in Levin’s classification )
and the typicality (using the relative frequency of the alternating frames).

Our approach resembles that of Lapata, except that we use automatically acquired selectional
preferences instead of handcrafted semantic cues. Like Stevenson & Merlo, we look at overlap of
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the lexical fillers of alternating slots. However, we show that this is useful for more than just the
causative distinction and we do this using class-based preferences to avoid problems of sparse data.
Like Schulte im Walde, we use selectional preferences automatically acquired within WordNet.
However, her automatically acquired preferences degraded the performance of her system. We
demonstrate that automatically acquired preferences are useful for detecting role switches. Like
Lapata, Stevenson & Merlo and Schulte im Walde, we use automatically detected syntactic cues.
In our approach, these are provided by the SCF acquisition system.

5.5 Combining Automatically Acquired Syntactic and Semantic
Evidence for Diathesis Identification.

Diathesis alternations lie at the border between syntax and semantics. They are concerned with
syntactic realizations that arise from the semantics underpinning the verb argument structure. We
propose an automatic method that can be used for determining participation. We concern ourselves
with alternations that are characterised by argument movement, whether or not this is accompanied
by an omitted argument.

Selectional preference has already been linked with the capacity for verbs to drop their ob-
jects (Resnik, 1993a). This provided empirical evidence for the link between the ease at which the
direct object can be inferred, and participation in the implicit object construction. The rationale
underlying alternations concerned with argument movement are not so clear cut. For example, the
conative alternation is shown in example 25. Below this are Levin’s comments on this alternation:

(25) a. I pushed the table.

b. I pushed at the table.

The conative alternation is a transitivity alternation in which the object of the verb
in the intransitive variant turns up in the intransitive conative variant as the object
of the preposition in a prepositional phrase headed by the preposition at (sometimes
on with certain verbs of ingesting and the push/pull verbs). The use of the verb in
the intransitive variant describes an ‘attempted’ action without specifying whether
the action was actually carried out. The conative alternation seems to be found with
verbs whose meaning includes notions of both contact and motion. (Levin, 1993,
p.42).

Diathesis alternations arise from subtle semantic components of the verb [pp.4-11](Levin,
1993). However, these nuances of meaning are often rather elusive, and hard to define. They relate
to the meaning of the verb, rather than the meaning of the arguments (Nicholls, 1995), although
the combination is important for the alternation to occur (Montemagni et al., 1995). Identifying
participation by searching for these semantic components automatically would be difficult for
two reasons: (i) the semantic components are poorly defined, and (ii) there is no obvious way of
labelling the verbs in the data without access to the knowledge that we are trying to discover.

In this chapter, we investigate whether diathesis alternations can be observed in corpus data
by looking at role switching. That is, by seeing which verbs take arguments that can occur in slots
with different grammatical roles in different syntactic realizations. We refer to these slots with
different grammatical roles in the alternating variants as the target slots. For example, the target



Chapter 5. Identifying Diathesis Alternations 126

slots of the causative alternation are the direct object slot of the transitive SCF and the subject slot
of the intransitive SCF. In our experiments, we narrowed the search for potential candidates by
using information from the SCF acquisition machinery. Verbs without the frames involved in a
specified alternation were filtered out. Verbs where the frames occurred, but did so with a low
frequency, were also filtered out. Identifying participation was then a matter of observing whether
role switching took place between the target slots. There are however two main difficulties with
this approach.

Firstly, the set of possible lexical fillers of one slot may not be the same as the set of fillers
of another, even when the verb does participate. Montemagni et al. (1995) studied the causative-
inchoative alternation in Italian. They found non-alternating argument heads in one of the target
slots for many verbs, and in some cases in both. Interestingly, the non-alternating arguments were
frequently related to the alternating arguments by figurative sense extensions. For example, al-
ternating arguments of suonare (to ring or play) included campana (bell) and musica (music).
Non-alternating arguments included campanile (clock tower) and telefono (telephone), which oc-
curred as subjects only, and Mozart and Dire Straits, which occurred as objects. Campanile and
telefono were seen as sense extensions of campana (‘container for contents’). Meanwhile, Mozart

and Dire Straits were seen as sense extensions of musica (‘artist for art form’). In all cases, there
was necessarily a non-empty intersection of the possible fillers of the alternating slots. It is our
contention that automatic identification using information from the argument heads will be possi-
ble provided this intersection is sufficiently large.

The second difficulty for identifying RSAs using argument head data is due to sparse data.
Many of the actual argument heads in the alternating slots may not overlap in the corpus data
under scrutiny. To allow for this, we used the semantic preferences of the slots instead of the
argument heads themselves. The semantic preferences provided generalisations of the type of
argument head that can occur in a given slot. These preferences were automatically acquired as
TCMs for the target slots of a RSA. We then compared the TCMs at the target slots. There were two
ways in which we did this.

The first method did not use the TCMs themselves, but the calculations used for producing
them. Using MDL for acquiring preferences provided us with a total cost, or description length,
for each of the preference models. We exploited this in an approach which compared these costs
for alternation detection. We refer to this as the ‘MDL method’ and describe it in section 5.5.2.

In the second method, we compared the TCMs at the target slots directly. We have three types
of preference models (ATCM, PTCM and LLRTCM) available. All types provide a set of classes with
a preference score at each class. Probability distributions are particular amenable for comparison
using measures of distributional similarity. There are many established methods for comparing
probability distributions. The details of some of these are provided in subsection 5.5.3 below. Sets
of association scores and LLR scores could be normalised to produce a set of scores on a particular
scale. However, since these scores are less well understood than probabilities, similarity measures
were used only on the PTCMs. We refer to approaches for diathesis detection using distributional
similarity measures as the ‘similarity methods’.

We also investigated a method which used the argument heads directly. The method relied on
a measure of overlap of the sets of lemmas at the target slots. We refer to this as the ‘lemma based
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method’. This can be viewed as a baseline method for comparison with the MDL and similarity
approaches, which used the selectional preferences. This allows us to demonstrate the gains we
make by generalising from lemmas to selectional preferences.

A lemma-based method will be particularly vulnerable to sparse data, since no generalisation
is made. Additionally, because of the lack of generalisation, non-alternating arguments may be
more problematic for a lemma-based approach than for a class-based approach. According to
Montemagni et al. (1995), the lexemes that do not alternate are typically some figurative extension
of ones that do. The figurative extensions, unlike the alternating arguments, do not typically
form a semantically cohesive class. If this is the case, then non-alternating arguments should
not pose too much of a problem for a class-based approach. The non-alternating arguments will
be dispersed throughout WordNet. They will provide a certain amount of noise for selectional
preference acquisition, but will not give strong preferences on the TCMs which might interfere
with alternation detection.

5.5.1 Syntactic Information

We used syntactic information before we used the selectional preference models. We used the
SCF lexicon for syntactic screening of verbs as candidates for a given alternation. To do this, we
required a mapping between Levin alternations and the SCF classification used by our SCF ac-
quisition system (Briscoe & Carroll, 1997). Such a mapping has been produced in draft form. 5

Levin alternations are listed alongside the SCF identifiers from Briscoe & Carroll’s system. We
hereafter refer to this mapping as the Levin–SCF mapping. This mapping provides several possi-
bilities for alternating SCFs given a particular alternation. We use the frames most prototypical of
the Levin alternations. For example, the most prototypical, mapping for the conative alternation
(given above in example 25) is given as: 6

(class 87 96) � (classes 24, 24 50 or 24 51 161)
� �	� � ������� ��� ��� � � � 
 � � �	� � ��������


Another possibility is also suggested, with an additional PP argument:

(class 77 95) � (classes 56 49, 49 50 or 31 49)
� �	� � ������� ��� ��� � � � �	����
 � � �	� � ���	��� �	����


This second possibility was presumably added in case a PP has been attached to the verb by the
parser, perhaps in error, and the SCF acquisition system has not filtered this out as an adjunct. We
do not include these cases. They appear to have been included to try and compensate for errors
made by the parser and SCF acquisition system.

5The mapping was the work of Anna Korhonen. We are indebted to her for the use of this.
6Each distinct SCF classification is represented by one or more SCF class numbers joined together with an underscore

e.g. 24 51 161. More than one class is provided by the SCF acquisition system where, for some subcategorization
patterns, the system cannot tell which of the classes is appropriate so the possible classes are conjoined. Furthermore
the mapping specifies one or more of these classifications where any of them would be appropriate for this alternation.
For example, The transitive SCF is identified by any of the three specified classes, 24, 24 50 or 24 51 161.



Chapter 5. Identifying Diathesis Alternations 128

5.5.2 Using MDL for Diathesis Detection

This section outlines a method for diathesis detection which uses the cost of producing the pref-
erence models, rather than using the actual preference models themselves. A comparison is made
between the sum of the costs for separate TCMs at the target slots, and the cost of a TCM for the
combined data from both the target slots (the combined model). If the data at the two slots is
similar, then the cost of the combined model is smaller than the sum of the costs for the sepa-
rate models. This method assumes an implicit threshold at the cost of the two separate models.
Participation is detected in cases where the combined model is cheaper than the separate models.

In our preference acquisition system, MDL selects the model which makes the best compromise
between the detail of the model, and the match of the model to the data. The cost of the model
is calculated using the model description length. The cost of the data encoded in the model is
calculated using the data description length. The sum of these two description lengths (the total
description length) is minimised. As we explained in section 3.6.4, the data description length,
and therefore the total description length, is reduced in cases where the nouns senses in the corpus
data accumulate in the same classes in WordNet. The more homogeneous the data is, the cheaper
it becomes to store it. Diathesis alternation detection works by using the costs to indicate where
the data across two slots is similar, since combining it is cheaper than modelling it separately.

For the three different model types (PTCMs, ATCMs and LLRTCMs), the description lengths
are calculated differently. They do however share the characteristic of cheaper costs for more
homogeneous data. For the PTCMs this is because the description length (given in equation 2.17
on page 33) is obtained using the log of the conditional probability (p � c � v � ). When the probability
distribution becomes uneven the message becomes more predictable. The entropy decreases and
encoding the message becomes cheaper.

The ATCM description length (given in equation 2.20 on page 34) is based on the description
length for the probabilistic models. It is also reduced where the verb specific data is concentrated
in some areas. This is because classes with a high conditional probability, compared to the prior
probability, have a high association score. High association scores contribute to a low description
length.

The LLRTCM description lengths (given in equation 2.21 on page 38) are also reduced by high
concentrations of the conditional probability distribution at particular classes provided that the
observed probability distribution exceeds that expected for these classes. The expected value is
based on the null hypothesis that the verb does not have an effect on the probability distribution.
High concentrations of conditional probability tend to increase LLR and decrease the relative cost
of these models.

Figure 5.1 illustrates the scenario of diathesis alternation identification using ATCMs. Three
ATCMs were acquired for each predicate. The figure displays the costs of the three models actually
used for detection of the causative alternation for begin. That is the minimum costs found when
using equation 2.20 on page 34 to select the optimum model for the three respective datasets. One
model was acquired for the data from the object of the transitive frame. 7 The cost of this model
was -552. Another model was acquired for the subject of the intransitive. The cost of this model
was -824. Finally, the third ATCM was acquired for the combined data from the two frames. The

7We collected data from both active and passive versions of this frame.
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Figure 5.1: Causative detection for the verb begin

cost of this combined model was -1596. ATCMs are produced as a by-product of the procedure
for estimating a model for the conditional data (Abe & Li, 1996). The use of � logA � c � v � (see
equation 2.20 on page 34) in the data description length frequently results in a negative cost. The
costs of the separate models can nevertheless be added together to give the cost of encoding the
data separately. In the case of begin, we have � 824 � � 552 � � 1376 when summing the costs
at the target slots. This is a higher value than -1596, taking the sign into account, indicating that
it is cheaper to combine the data into one model for begin. We therefore conclude that begin

participates in the causative alternation.
The TCM type has a considerable effect on diathesis alternation detection, despite the fact that

all model types share the characteristic of being cheaper for homogeneous data. This is because
the description length calculation for ATCMs and LLRTCMs departs from a true MDL description
length, measured as the number of bits required.

As we just saw, the ATCM cost can be negative. This is related to the number of bits required
only indirectly when considered alongside the prior model (Abe & Li, 1996). A greater cause for
concern is that the ATCM depends heavily on the prior TCM that is used. 8 This is particularly
important when using the costs for identifying alternations, because a decision needs to be made
as to which slot to obtain the prior data from, for the combined model. The results reported in
(McCarthy & Korhonen, 1998) were heavily dependent on the prior used, as we report below.

The LLRTCMs use a more discerning score, as far as low frequency data is concerned. How-
ever, the description length calculation combines LLR scores across the TCM. This is done as a
heuristic; there is no theoretical justification for doing so. As a consequence, the costs do not
reflect the actual description length required for encoding the model and data. Therefore, the
costs of two separate models cannot legitimately be combined for comparison with the cost of the
combined model.

The PTCMs have a clear description length and do not require a separate model for the prior
distribution. Therefore, these are straightforward to use for diathesis detection.

8Hang Li, personal communication.
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There are two foreseeable problems with the MDL approach, regardless of the TCM type, both
of which can give rise to false positives. The first problem also applies to the similarity and lemma
based methods. The semantic constraints at the target slots may be similar without this being due
to an alternation. For example, the causative alternation involves the object of the transitive frame
switching place with the subject of the intransitive (as in example 13 on page 110). Some verbs
may have similar argument heads in the target slots, without participating. For example, help

commonly occurs with nouns or pronouns under the person class in both the subject and object,
as in example 26. The semantic roles of the subject of the intransitive (agent) and object of the
transitive (theme) are different. However, the overlap between the semantic type of the filler of
these slots might lead to false identification of participation. The extent of this problem depends
on the extent of the similarity of the fillers in the different semantic roles involved. It is unlikely
that there will be a total overlap of lexical fillers in two slots having different semantic roles. For
example, although nominals denoting person frequently occurred as the subject and direct object
of help in lexicon D, nominals denoting sum of money occurred as subjects but not as direct
objects.

(26) a. I help him.

b. He helps.

The second cause of false positives is peculiar to the MDL method. The relative frequencies of
the alternate variants can be substantially different. When this is the case, the argument head data
from one frame can overwhelm the other. False positives arise because the cost of the combined
model is close to the cost of the model for the overwhelming frame. This is a cheaper alternative
to separate models which require separate model description lengths.

To alleviate the first source of false positives, we investigated whether filtering out candidates
which have similar semantic constraints where the two slots co-occur in the same frame improved
accuracy. This was only possible for alternations where the slots do co-occur in the same frame.
An example where they do is the transitive variant of the causative alternation. For this alternation,
the object of the transitive frame is predicted to have similar constraints to the subject of the
intransitive. If there are similar semantic constraints in the two grammatical slots in the transitive
frame to start with, then we cannot be sure whether a similarity at the slots in the two SCFs is an
indication of alternation. The intransitive frame could instead be an instance of the implicit object
construction. For this reason, we compared accuracy with and without filtering out candidates
with similar subjects and objects in the transitive.

The second problem is a particular obstacle for the MDL method, because this is affected by
the sample size. When there is a disparity in the relative frequencies of the alternating frames, the
cost of the TCM at the more frequent slot is likely to overwhelm the cost at the other slot because
of the larger data description length. This renders the MDL method for establishing participation
vulnerable, except for predicates with an even ratio between the alternating frames. The similarity
approaches are more suited for predicates with an uneven ratio.

5.5.3 Measuring Similarity between Semantic Preferences

Here we discuss some of the measures available for comparing probability distributions from the
PTCMs for the similarity-based approaches. Most are measures of distance, rather than similarity,
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but this does not affect their utility. What we require is a means of ranking the verbs on grounds
of the similarity, or dissimilarity, of the selectional preferences in the target slots.

We describe below some of the similarity measures used in the literature. We did not smooth
our selectional preference models prior to using these similarity measures. We did not do so
because using a class-based approach was an alternative to smoothing (Resnik, 1993a; Li & Abe,
1995). The majority of PTCMs did not contain classes with zero probabilities. However, even using
a class-based approach there were some classes with a zero conditional probability. We coped with
these by only considering similarity measures which are defined for zero values. We investigated
a variety of measures to see if there was a significant difference in performance depending on the
measure used.

Lee (1997, 1999) has compared the performance of a variety of similarity measures, for the
purpose of smoothing language models. She used a co-occurrence pair decision task, like the
pseudo-disambiguation experiments in section 4.3.4 of chapter 4. The system had to identify
which of two verbs was more likely to co-occur with a given noun. The correct decision was
the one attested in the corpus. Her experiments showed that high performance is associated with
similarity measures which concentrate effort on items for which both probability estimates under
comparison are non zero (1999). In the following, we note the similarity measures which Lee
reported to be most affected by zero values.

Euclidean Distance

Euclidean distance (ED) is a positive valued metric. It represents the geometric distance between
two vectors. A large value represents a large distance (or dissimilarity). It is given in equation 5.9.

ED � p1 � x � � p2 � x � � �
�

∑
x
� p1 � x � � p2 � x � � 2 (5.9)

This function is affected by zero probabilities (Lee, 1999, 1997). Nevertheless, since this
function is defined even when there are zero values we took it forward for experimentation.

Cosine

The cosine is related to the angle between two vectors. It is defined in equation 5.10. It is a
true similarity measure, rather than a measure of disimilarity. Higher scores represent greater
similarity. The range of possible values is between 0 and 1. The value is 1 where p1 � x � � p2 � x �
for all values of x. The minimum value is 0. This results where one vector has zero values for
every value of x that the other vector has a non zero value. It is useful in cases where there are
differences of scale (Schütze, 1992) although this was not the case here, since we were using
probabilities.

cos � p1 � x � � p2 � x � � � ∑x p1 � x � p2 � x ��
∑x p1 � x � 2

�
∑x p2 � x � 2 (5.10)

Lee noted that this value, whilst placing most importance on values of x with non zero esti-
mates for both probability distributions, does also use the items which have a non zero value for
one of the estimators. We also took this measure forward for experimentation.
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L1 norm

This is a geometrically-motivated measure and is given in equation 5.11. It is also known as the
‘Manhattan’ or ‘taxi-cab’ distance (Lee, 1997).

L1 � p1 � x � � p2 � x � � � ∑
x
� p1 � x � � p2 � x � � (5.11)

This function can be expressed in terms of only the values of x which have non zero values for
both p1 and p2 (Lee, 1997, p13). This form is given in equation 5.12, where the term ∑x � p1p2 is
a sum over those values of x which have a non zero probability for both p1 and p2. This function
is not greatly affected by zero estimates. The L1 norm is taken forward for our diathesis detection
experiments.

L1 � p1 � x � � p2 � x � � � 2 � ∑
x � p1p2

� � p1 � x � � p2 � x � � � p1 � x � � p2 � x � � (5.12)

Cross entropy

Cross-entropy is often used in the evaluation of language models. It is defined in equation 5.13. It
is an indicator of how good one distribution (p1 � x � ) is as an approximation for another (p2 � x � ).

cross entropy � p1 � x � � p2 � x � � � � ∑
x

p1 � x � log p2 � x � (5.13)

Cross entropy is minimal when p1 � x � � p2 � x � . Thus, this is a measure of dissimilarity. This
measure is not defined for zero values and was therefore not a candidate for diathesis alternation
detection. It is included here as it bears a relation to relative entropy.

Relative entropy

This is also termed Kulback-Liebler distance (Cover & Thomas, 1991) and is given in equa-
tion 5.14. It measures the average cost of using one distribution to code for the other. It can
also be defined in terms of cross-entropy (Krenn & Samuelsson, 1997; Manning & Schütze, 1999)
as in equation 5.15

D � p1 � x � � � p2 � x � � � ∑
x

p1 � x � � log p1 � x �
p2 � x � (5.14)

D � p1 � x � � � p2 � x � � � cross entropy � p1 � x � � p2 � x � � � entropy� p1 � x � � (5.15)

where entropy � p1 � x � ��� � ∑
x

p1 � x � log p1 � x � (5.16)

Unfortunately, this measure is undefined where there are non zero values for p1(x) which have
corresponding zero values for p2(x). For this reason, we do not suggest it for diathesis alternation
detection using non-smoothed models.
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α-skew divergence

The α-skew divergence (αSD) was devised by Lee (1999) and is defined in equation 5.17. This
measure is a modification of Kulback-Liebler divergence. The α constant is a value between 0
and 1 which smooths p1(x) with p2(x) so that the αSD is always defined. If α is set to 1 then this
measure is equivalent to the Kulback-Liebler divergence.

Lee compared the performance of this measure with a variety of similarity measures. This
was done on the co-occurrence pair decision task described above. α-skew divergence had a
statistically significant error reduction compared to all the other similarity measures used.

Lee used a value of α � 0 � 99. She suggested that the value of α selected should be inversely
related to the sparseness of the data. This is yet to be proved. We took α-skew divergence forward
for diathesis alternation detection, using the same value (0.99) for α as Lee.

αSD � p1 � x � � p2 � x � � � D � p2 � x � � � � � α � p1 � x � � � � � 1 � α � � p2 � x � � � � (5.17)

5.5.4 The Lemma-Based Approach

We used a lemma based approach to compare with the MDL and similarity-based approaches. This
was used to demonstrate that generalisations to classes provide superior results to those obtained
when using the argument heads directly. We used a measure incorporating the proportion of
overlap between the argument heads in the two target slots. The measure was termed lemma
overlap (LO) and is given in equation 5.18, where A and B represent the sets of lemmas at the two
target slots. LO is defined as the size of the intersection (duplicates included) of the multisets 9

of argument heads at the target slots divided by the size of the smaller of the two multisets. For
example, in diagram 5.2 a Venn diagram illustrates the sets of the lemmas at the transitive and
intransitive SCFs for the verb break. The intersection of two multisets includes duplicate items
only as many times as the item is in both sets. For example, if one slot contained the argument
heads � person, person, person, child, man, spokeswoman � , and the other slot contained � person,

person, child, chair, collection � , then the intersection would be � person, person, child � , and LO

would be 3
5 . This measure ranges between 0 (no overlap) and 1 (where one set is a proper subset

of that at the other slot).

LO(A, B) � �multiset intersection � A B � �
� smallest set � A � B � � (5.18)

Our measure bears some relation to the measure used by Stevenson & Merlo for detecting
the CAUS (causative) feature. They used the size of the ‘overlap’ of the two multisets, but where
duplicated items were included as many times as there were duplicates in one of the sets. Using
the above example, the overlap between � person, person, person, child, man, spokeswoman � and

� person, person, child, chair, collection � is � person, person, person, child � (4). Stevenson &
Merlo divided this by the size of the union of the two multisets, (11, in this example). This gave a
postive number at or above 0 and below 1. This proportion will be larger as the overlap increases,
but this is tempered by the size of the union. The proportion will never reach 1 because the size of

9A mutliset is a set which may contain items more than once,
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Figure 5.2: Lemma causative detection for the verb break

the union is always larger than the size of the overlap. This is because the overlap only includes
duplicated items as many times as they are in one of the multisets. At least one duplicated item
will always be counted in the union, but not the overlap. Moreover, if two sets are identical, then
the score will only be 0.5. We counted duplicated items only as many times as they exist in both
sets to give a larger score where there is more evidence of a lemma occurring in both slots. In the
case that one multiset is a subset of the other, our LO score is 1.

5.5.5 Identification of Participation

Of the three methods, the MDL method was the only one where a threshold was not explicitly
required to determine participation. There was an implicit threshold which was determined by the
cost of the two separate models. Participation was predicted where the cost of the combined data
was lower than this implicit threshold.

Accuracy was calculated for the MDL method by comparing the system’s decision against the
decision of human judges. The system decided in all cases presented to it.

For the similarity and lemma-based experiments, the scores were on a continuous scale. We
used the Mann Whitney U test (Siegel & Castellan, 1988) to determine the significance of the
relationship between the scores and participation.10 Accuracy was calculated using a threshold at
the mean, or median to determine participation. The decision for each verb was compared to the
consensus of the human judges. The thresholds were used simply to give us a rough idea of how
well the measures partitioned the verbs. If a threshold were to be used in earnest then it would
need to be obtained from held out data.

5.6 Scope

Our strategy of using SCF and selectional preferences is applicable to a subset of the alternations
described in Levin. In this section, we demarcate the boundaries for our approach. The alternations

10The Mann Whitney U test was selected since the scores of both the positive and negative verbs were significantly
skewed, according to the measure of skewness given in Howitt & Cramer (1997, p340).
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Alternation Levin Section Information
Middle 1.1.1 Adverbial
Reciprocal 2.5 co-ordinated nouns in NP
Body-Part Possessor Ascension 2.12 possessive
Possessor-Attribute Factoring 2.13 possessive
Reflexive 4 reflexive
Postverbal subjects 6 There + subject analysis

Table 5.2: Alternations requiring additional syntactic information

which do not meet our criteria are identified and eliminated. We also point out others, which are
not considered here, but which could be identified with some modifications to the SCF acquisition
process. We refer to the alternations using Levin’s (1993) terminology, and we supply the section
number of the classification from her book in brackets. For example the causative-inchoative
alternation is listed in the book as (Levin, 1.1.2.1).

In our experiments, we cannot distinguish subtypes of alternations which are not reflected in
different SCFs. So, for example, we experiment with the causative alternations collectively, rather
than using the finer distinctions made by Levin.

The alternations we are concerned with involve role switches. We detect these using se-
lectional preferences at the target slots. Alternations concerned solely with arguments which
are omitted are not handled here. These are Levin’s ‘Unexpressed Object Alternations’ (Levin
1.2). We referred to them above collectively as the implicit object alternation when we discussed
Resnik’s (1993a) work.

We did not include alternations which require syntactic information that is not currently stored
in the SCF lexicon. For this reason, we did not include alternations which typically involve an
adjunct, since the SCF filters these out. The middle alternation was therefore ignored (Levin 1.1).
We also did not look at alternations which involve analysis at the phrase level, for example, the
‘reciprocal’ alternations (Levin 2.5). An example of this is given below in example 27, which is an
instance of the simple reciprocal alternation (transitive) (Levin 2.5.1). This alternation includes a
collective NP, the sugar and the butter in our example. Identifying information at the phrase level
is lost in the process of SCF acquisition. This information could be recovered from the parser.
Whilst we did not experiment with these alternations, our method is still applicable. The syntactic
markers are in many cases easy to identify. For example, Body-Part Possessor recognition would
be possible by including the possessive marker in our enumeration of argument heads. Where
the syntactic markers can be identified, candidates which do not participate will more readily be
filtered out. In table 5.2, we list alternations which would require us to store additional syntactic
markers in our argument head entries. The final column indicates the syntactic information that is
require for correct identification of these alternations.

(27) a. I mixed the sugar into the butter.

b. I mixed the sugar and the butter.

We did not experiment with the passive (Levin 5). The passive is nearly exceptionless in
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Zero Mean Bracket Bracket
crossings crossings recall precision

Parser (% sents.) per sent. (%) (%)
LR 57.2 1.11 82.54 83.00
PCP 54.2 1.13 82.50 82.68

Table 5.3: Parser evaluation

its application to transitive verbs. Transitive verbs are identified as such by the SCF acquisition
system. Also, the parser already identifies passives using the past participle and the auxiliary be.

There are a number of miscellaneous constructions listed by Levin (Levin 7). These concern
the semantic type of the arguments. These might best be dealt with by looking at the actual
semantics of the argument heads. Also, a further section (Levin 8) deals with special diatheses,
not featuring in alternations. These are not handled here.

5.7 Sparse Data Problems

Our methods are applicable to all the alternations listed in Levin, but not mentioned in section
5.6 above. However, we were not able to experiment with all of these because of sparse data
problems. We experimented with two lexicons: Lexicon A and Lexicon D. Lexicon A is smaller
than Lexicon D. It was built using 10.8 million words of parsed text from the BNC. Lexicon D was
constructed using 19.3 million words of parsed text from the same source.

The parses used for lexicon A were obtained from a probabilistic chart parser (PCP) (Chitrao
& Grishman, 1990). The parses for lexicon D were the output from a LR parser (Inui et al., 1997).
The parsers were evaluated on a test suite of 500 manually bracketed sentences. 11 The table 5.3
displays the results of this evaluation. The column labelled ‘zero crossings’ gives the percentage
of sentences for which no bracketing produced by the parser overlaps with any in the gold standard
test suite. ‘Mean crossings’ indicates the mean number, per sentence, of brackets from the parser
which overlap with the gold standard brackets. ‘Bracket recall’ shows the number of times the
system’s brackets matched those of the gold standard, divided by the number of brackets in the
gold standard. ‘Bracket precision’ shows the number of times the system’s brackets matched
those of the gold standard, divided by the number of brackets in the parser output. The LR parser
is slightly more accurate than the PCP, but the differences are not statistically significant.

To investigate if our methods worked, we needed a sample of positive and negative candidates
each with sufficient data for preference acquisition.12 For experimentation, we needed to be sure
that our method successfully separated the positive and negative candidates for each alternation.
To be sure of this, we applied significance tests to see if there was a significant relationship between
our similarity and lemma overlap measures and participation. We used an even number of positive
and negative candidates which gave us a 50% baseline for a random classification. We limited
experimentation to alternations for which we had at least 3 positive and 3 negative candidates.
This just met the minimum requirement for group size for significance testing with the Mann

11We are indebted to John Carroll for the parses and evaluation results.
12We used a threshold of 10 argument heads which can be classified in WordNet.
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Whitney U test.
Table 5.4 lists the alternations with which we did not experiment because of sparse data. The

sparse data problem was made worse by the fact that some alternations only exist for a very small
number of verbs. In the worst case, experimentation was impossible for individual alternations
because there was only one candidate. This is the situation for the blame alternation (Levin 2.10)
given in sentence 28. This alternation only holds for blame.

(28) a. Mira blamed the accident on Terry.

b. Mira blamed Terry for the accident.

Many other alternations are listed in Levin for a small set of low frequency verbs. For example,
the substance/source alternation (Levin 1.1.3) exemplified in 29.

(29) a. Heat radiates from the sun.

b. The sun radiates heat.

Levin lists participant as :
belch (12), bleed (82), bubble (64), dribble (12), drip (73), drool (9), emanate (64), exude (30),
gush (30), leak (84), ooze (41), pour (449), puff (30), radiate (55), seep (65), shed (125), spew

(8), spout (5), sprout (43), spurt (14), squirt(4), steam (64), stream (64), sweat (67)

The frequencies for these verbs from Lexicon A are given in brackets. These are frequencies over
all SCFs. Once we are specific to the SCF, the data is even more sparse. The most frequent verb was
pour. The [ �	� ���	� ] and [��� ����� � ������
 � ] SCFs involved in the substance/source alternation are
specified by the Levin–SCF mapping. The frequencies for pour were 138 ([����� �	� ]) and 14 ([���
����� � ������
 � 
 ). For most verbs, some argument heads were proper nouns, which we did not
use, or common nouns unclassifiable in WordNet. After pour, the next most frequent candidate,
shed was not identified as taking the PP SCF in the lexicon. From this example, it is easy to see
how sparse data hampers alternation detection. Particularly where alternations involve specific
prepositions.

Additionally, we determined the grouping for evaluation using the decisions of human experts.
This is described below in section 5.8.2. If there was a significant level of disagreement between
judges, then the alternation was not used. Furthermore, if there was strong disagreement from
the human judges for a particular verb then it was not used. Thus, many alternations were not
investigated because there were not enough suitable candidates in the corpus data available.

The alternations with which we experimented are listed in table 5.5

5.8 Diathesis Identification Experiments

In this section, we present our diathesis identification experiments. In subsection 5.8.1 we say a lit-
tle more about the selection of candidates using syntactic information. Subsection 5.8.2 describes
how the gold standard was set up for evaluation. Before the sections containing the main bulk of
our results, we provide a subsection (5.8.3) which discusses the alternations which were identified
using only SCF information. The selectional preferences were not required for these alternations.
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Alternation Levin Sect. No
Substance/Source 1.1.3
Locative prep drop 1.4.1
With prep drop 1.4.2
Locative Alternations 2.3
Creation and Transformation 2.4
Fulfilling 2.6
Image Impression 2.7
With/Against 2.8
Through/With 2.9
Blame 2.10
Search 2.11
As 2.14
Oblique subject 3

Table 5.4: Levin alternations with sparse data

Alternation Levin Sect. No
Causative 1.1.2
Conative 1.3
Dative 2.1
Benefactive 2.2

Table 5.5: Candidates for experimentation
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The main results are divided into four subsections. Each relating to one of the three approaches
outlined in section 5.5, with two of the subsections corresponding to the MDL approach. Results
from the lemma method are given in subsection 5.8.4. Those from the MDL method using the
ATCMs are given in 5.8.5, whilst those using the PTCMs are in 5.8.6. Finally, the results from the
similarity methods are in 5.8.7.

5.8.1 Using the Syntactic Information

For experimentation, we required alternations with positive and negative candidates. This was
necessary to investigate the success of our methods. The SCFs required for each alternation were
specified by the Levin–SCF mapping. Candidates were selected which had the appropriate SCFs,
and where each SCF was listed with 10 or more argument heads which could be classified in
WordNet. In some cases, MDL recommended a TCM at the dummy root. For the PTCMs, we used
the WordNet root classes, below the root, in these cases.

For alternations involving PPs, the alternation is sometimes only valid for specified prepo-
sitions. For example, the conative alternation is only relevant for the prepositions on and at.
Moreover, a verb might undergo the alternation with some of the prepositions specified for an al-
ternation, but not all. For alternations involving prepositions we needed to specify the preposition,
as well as the verb, that the selectional preferences were collected for.

For the lemma and MDL experiments we used lexicon A. For the similarity approach we used
lexicon D.

5.8.2 Human Agreement

Candidates were selected for the alternations in table 5.5 by virtue of the SCFs they were credited
with having in the lexicon. We made an initial decision on participation for each verb with the
appropriate frames for a given alternation. This was to ensure that we had an even split between
positive and negative candidates in the test set which we presented blind to our human judges. The
test set was chosen from these positive and negative groups, with the same number of candidates
taken at random from each group. The entire test set was presented to the judges as an alphabet-
ically sorted list. The judges had to stipulate whether each candidate participated in the specified
alternation or not. A ‘do not know’ verdict was permitted.

For the MDL and lemma-based experiments, two human judges were used. Candidates were
selected where these judges were in total agreement. Verbs for which the judges disagreed were
removed.

For the similarity approach, the decisions of four judges were obtained. The kappa statis-
tic (Siegel & Castellan, 1988) was calculated to establish whether there was significant agreement
between judges. This statistic was calculated using the number of judges assigning each category
(positive, negative or don’t know) to each verb. In our equations, ni j represents the number of
times category j was assigned to the verb i. The kappa statistic (K) is the ratio of the proportion of
times that the judges agreed (corrected for chance agreement) to the proportion of times that the
judges could have potentially agreed (again, corrected for chance agreement). This ratio is given
in equation 5.19.
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K � P � A � � P � E �
1 � P � E � (5.19)

Chance agreement, P � E � , is defined in equation 5.20, where m is the number of categories (3
in our case) , k is the number of judges and N is the number of verbs.

P � E ���
m

∑
j � 1

� ∑
N
i � 1 ni j

Nk
� 2 (5.20)

The proportion of times that the judges agreed � P � A � � is defined in equation 5.21.

P � A � � 1
Nk � k � 1 �

N

∑
i � 1

m

∑
j � 1

n2
i j �

1
k � 1 (5.21)

K ranges in value between 0 (no agreement) and 1 (total agreement). The value of the kappa
statistic was used for significance testing to see if the judges agreement was greater than or less
than that expected by chance. For large values of N, K is normally distributed with variance as in
equation 5.22:

var � K ��� 2
Nk � k � 1 �

P � E � � � 2k � 3 � � P � E � � 2 � 2 � k � 2 � ∑ j � ∑N
i � 1 ni j

Nk � 3�
1 � P � E � � 2 (5.22)

Equation 5.23 gives the value to be looked up in the tables for the normal distribution to
determine the probability of the observed agreement being due to chance.

z � K�
var � K � (5.23)

We did not attempt automatic identification of participation where there was not significant
agreement between the human judges. For alternations for which there was a significant level of
agreement, only verbs with 75% agreement or more (3 judges or more) were taken forward for the
diathesis alternation identification experiments.

5.8.3 Alternations Identified Using Only Syntactic Information

From experiments with the data in Lexicon A, two of the alternations under investigation had
only positive candidates with sufficient frequency at the alternating SCFs (McCarthy & Korhonen,
1998). These alternations were the dative and benefactive alternations. The positive candidates
were acknowledged as such by the human judges. Participation in these alternations was there-
fore detected by syntactic information alone. Interestingly, these were the alternations which
Lapata (Lapata, 1999) identified using shallow parses, statistics and a variety of linguistic cues.
Lapata did this using a larger sample (the full BNC).
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Dative

The potential candidates remaining with more than 10 instances at the two slots stipulated for the
dative by our alternation classification were:

award, give, hand, lend, offer, owe.

These verbs all take the dative alternation. Thus, the SCF lexicon and Levin–SCF mapping alone
was enough to predict alternation in these cases. There were other verbs in the corpus data that
can take the dative according to Levin (Levin, 1993). However, they did not occur in the corpus
with sufficient frequency for detection of both the SCFs.

Benefactive

The frames characterising the benefactive alternation were also enough to filter out irrelevant
verbs. The verbs with sufficient occurrences of the SCFs were:

award, earn, give.

This information could be useful for further refining the SCF classification. The SCF stipulated
by the Levin–SCF mapping for the prepositional construction of the dative and benefactive is also
assigned by the SCF acquisition system to other � ��� � �	� ����
 constructions. The co-occurrence
of this SCF with the SCF for the double object construction could be used to provide specific SCF

labels for the prepositional phrase construction of the dative (to) and benefactive (for). These
could then be distinguished from more general � ��� ����� �	��
 constructions.

5.8.4 Lemma-Based Experiments

We investigated a lemma-based approach for diathesis alternation detection using the LO measure
given above in equation 5.18 in section 5.5.4. We investigated the relationship between this value
and participation in the causative and conative alternations. This was done using lexicon A.

Causative

For the causative alternation, there were plenty of candidates that occurred with the alternating
frames. We took a sample of 54 positives and 56 negatives. These occurred in lexicon A with
sufficient frequencies for the alternating SCFs to be used for the experiments requiring selectional
preference acquisition. These were those with 100% agreement between two judges. The sample
is given here:
Positive sample (54 verbs):-
bake, begin, bend, blend, boil, break, burn, calm, change, clear, close, continue, cook, crack,
crash, decrease, develop, drive, drop, dry, end, expand, finish, flood, fly, grow, hang, hurt, im-

prove, increase, land, march, match, melt, mix, move, open, record, repeat, ring, roll, settle, shut,
sink, split, spread, start, stop, stretch, swing, train, turn, vary, wake.

Negative sample (56 verbs):-
add, admit, answer, ask, attack, believe, bother, catch, charge, choose, climb, compare, cost, cut,
declare, demand, dress, drink, eat, expect, feed, feel, hear, help, hide, imagine, imply, investigate,



Chapter 5. Identifying Diathesis Alternations 142

Table 5.6: Mann Whitney U test results for conative

on at on & at

group size sum size sum size sum
positive 4 22 4 23 8 86
negative 4 14 4 13 8 50

kick, know, like, live, love, miss, nod, observe, pack, pass, pay, perform, plan, pull, read, remain,
remember, shout, sing, steal, survive, suspect, think, understand, wash, win, work, write.

The Mann Whitney U Test was used on the LO scores. A one tailed test was used. The
null hypothesis was that there is no relationship between LO and participation. The alternative
hypothesis was that the LO scores for participating verbs are greater than those of non-participating
verbs.

The Mann Whitney U test for large samples was used. From this a value of z was calculated
and this was looked up in tables of the normal distribution. The z score obtained was 1.007. For
the right tailed test a z score of this magnitude or more has a probability of 0.16 of occurring by
chance if the null hypothesis is true. This was not a significant result. 13 There was not a strong
enough relationship to reject the null hypothesis.

Conative

For the conative we performed two experiments. One for participation with the preposition on and
one for at. Four positive and four negative candidates were chosen for each preposition. These
were:
positive sample on:
bang, cut, press, pull.

negative sample on:
agree, move, remain, work.

positive sample at:
pull, push, shoot, tug.

negative sample at:
call, move, remain, work.

The sample size was rather small. We were limited by the number of positive candidates avail-
able with sufficient frequencies at the alternating SCFs. In addition to this, we removed candidates
where our two human judges were in disagreement. The Mann Whitney U test for small samples
was conducted.

13We would expect a probability below 0.05 for a significant result, if we carry out the test to the 95% level.
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Conative on

The results of the Mann Whitney U test signified that again, there was not a significant relation
between LO and participation. The group size and sum of the ranks that we obtained are given in
table 5.6 in the two columns headed by on. The probability of getting the sum of the ranks for the
positive group at 22 or above was 0.17. This was not significant.

Conative at

There was not a significant relationship between LO and participation, according to the Mann
Whitney U test. The group size and sum of the ranks obtained from our experiment are given in
table 5.6 in the two colums headed by at. The probability of getting the sum of the ranks for the
positive group at 23 or above was 0.1. Again, this was not significant.

Conative - combined samples

The previous sample sizes were rather small. We also performed the Mann Whitney U test on the
combined samples, using the verb and preposition combination for the target instances. The data
collected was still specific to the verb and preposition, but the Mann Whitney U test was conducted
on the scores of the combined samples. The result was, on this occasion, statistically significant.
The group size and sum of the ranks are shown in table 5.6 in the columns headed on & at. The
probability of getting the sum of the ranks for the positive group at 86 or above was 0.03. This
was a significant result. However, it was the only one of the LO experiments that was.

5.8.5 The MDL Method: using ATCMs

The MDL method was applied to identification of the causative alternation using the data in lexicon
A. Initially, this was performed with ATCMs. This followed earlier work reported in (McCarthy
& Korhonen, 1998). In the work described in this paper, a sample of 30 verbs was used. This
was the same sample used for the WSD experiment on page 65 of chapter 3. These verbs were
selected at random, and did not necessarily have the required SCFs. Half of the 30 verbs used in
the experiment reported in this paper were removed from consideration by virtue of not having the
required SCFs. Those removed were identified by the human judges as non-participating verbs.
Using the MDL method of diathesis detection on the 15 remaining verbs provided an accuracy of
87%. This was very encouraging when compared to the random baseline of 50%.14 Although these
results were encouraging, we show here that there are problems with using description lengths, and
in particular with using ATCMs.

For the ATCMs, a prior model for p � c � is required in the calculations. When obtaining models
for individual slots, the prior has usually been collected from the target slot (Resnik, 1993a; Abe
& Li, 1996; McCarthy, 1997), although Ribas (1995a) experimented with different priors. When
obtaining the description length for the combined model the choice of prior is not obvious since the
conditional data, dependent on the verb, comes from two slots. For alternating verbs, the data from
the two slots should be similar. The prior however is not specific to the verb, and combining the
data from both slots may confuse the results. A solution might be to take a prior from the slot that
is considered the ‘base form’ in a directed alternation rule. However, the issues of directionality

14The random baseline reflected the two way decision for participation.
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Table 5.7: The effect of the prior on ATCM results for the MDL method

prior accuracy
object 11/22 (50%)
subject 17/22 (77%)
obj and subj 12/22 (55%)
all nouns 10/22 (45%)

are far from clear cut. In McCarthy & Korhonen (1998), the prior was obtained from data at the
subject slot. However, there is as much justification for using the object slot.

We present here the results that we obtained when we repeated the experiment using a slightly
larger set of 22 verbs. This set included the 15 verbs used in McCarthy & Korhonen (1998). The
sample was extended to include more positive examples, since in McCarthy & Korhonen (1998)
the majority of candidates (10 out of 15) were negative. The 22 verbs we used were:

positive:
begin, break, change, drop, end, grow, move, ring, swing, worry.

negative:
add, ask, believe, charge, choose, cut, eat, expect, feel, help, know, like.

We used four different priors. These were obtained using data from:

1. the object slot

2. the subject slot (as in (McCarthy & Korhonen, 1998))

3. both the subject and object slot

4. all nouns in our corpus sample

The results are shown in table 5.7.
One false positive arose because cut was identified in every case as taking the causative. This

is easily explained since cut takes the middle alternation. The middle alternation is exemplified
by 30, and is a close relative of the causative. The adverbials which are characteristic of this
alternation are dropped by the SCF acquisition system. Thus the predicate was misclassified.

(30) a. the butcher cuts the meat.

b. the meat cuts easily.

The experiments with priors using the object slot, combined object and subject slots and the all
nouns sample, all suffered from false positives. When we used the prior from the subject slot, the
errors were all false negatives, with the exception of cut which is explained above. Ribas (Ribas,
1995a) and Li15 have both observed that the association score is greatly affected by changes to the

15Personal communication.
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prior. In this experiment, the prior from the subject slot diminished the effect of the overwhelming
frequency of the person class. The subject slot prior had a high probability at the person class
and this reduced the association score for this class. Since the association score for this highly
populated class was reduced, less spurious similarities were found across the target slots.

The results for the ATCM were so dependant on the prior used that we turned our attention to
other TCM types. LLRTCMs did not present as a good choice because the data description length
does not relate to the number of bits required for encoding the data. In these models, LLR is used
as a heuristic, in place of the data description length, From a small experiment using the 15 verbs
used in McCarthy & Korhonen (1998), all candidates were rejected from participation, apart from
one false positive.

We turned our attention instead to the PTCMs. The description lengths of these are more clearly
related to the number of bits for description, and so to MDL.

5.8.6 The MDL Method: using PTCMs

Using a larger sample of verbs, we investigated how well the causative alternation could be iden-
tified using the probabilistic models and the MDL method as before. We also extended the experi-
ments to include the conative alternation.

A problem for diathesis alternation detection using semantic preferences is that many slots
in different frames have similar preferences even where they do not alternate. We referred to
this problem, and gave an example, on page 130 above. There will be some differences in the
preferences at the corresponding slots of non-alternating verbs, but these may be small. One
possibility for increasing precision on the task, whilst reducing coverage, is to filter out verbs
where the alternating slots co-occur in the same SCF and the slot fillers are similar. Our example
of this is the transitive frame of the causative alternation. We experimented with and without
filtering out the verbs which showed similar preferences at the subject and object slots of the
transitive frame.

Causative:

We used the sample of 110 verbs (54 positives and 56 negatives) which were used in the lemma-
based experiment on page 141. These sets are listed again here to contrast them with the set of
verbs filtered because the subject and object slots of the transitive SCF had similar preferences,
using PTCMs and the MDL method.
Positive sample (54 verbs):
bake, begin, bend, blend, boil, break, burn, calm, change, clear, close, continue, cook, crack,
crash, decrease, develop, drive, drop, dry, end, expand, finish, flood, fly, grow, hang, hurt, im-

prove, increase, land, march, match, melt, mix, move, open, record, repeat, ring, roll, settle, shut,
sink, split, spread, start, stop, stretch, swing, train, turn, vary, wake.

Negative sample (56 verbs):
add, admit, answer, ask, attack, believe, bother, catch, charge, choose, climb, compare, cost, cut,
declare, demand, dress, drink, eat, expect, feed, feel, hear, help, hide, imagine, imply, investigate,
kick, know, like, live, love, miss, nod, observe, pack, pass, pay, perform, plan, pull, read, remain,
remember, shout, sing, steal, survive, suspect, think, understand, wash, win, work, write.
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Verbs from either of the above groups filtered out because the subject and object of the transitive
are similar (71 verbs):
admit, answer, ask, attack, bake, believe, bend, blend, boil, bother, burn, calm, catch, charge,
clear, climb, cook, crack, crash, cut, declare, decrease, dress, drink, drive, drop, dry, eat, ex-

pand, expect, feed, finish, flood, fly, grow, hang, hear, help, hurt, imply, kick, know, land, like,
love, match, melt, miss, mix, move, pack, pass, pay, pull, remain, remember, ring, roll, sink, split,
spread, stop, stretch, suspect, swing, think, train, turn, understand, vary, wake.

The filtering removed a surprisingly high proportion of verbs. Cases where similar sets of
lexical items appeared in both grammatical slots in the transitive frame were filtered as anticipated.
In other cases, verbs were removed where there were in fact differences between the selectional
preferences at the two slots. Frequently this was because the actual semantic preferences of the
verbs for the different slots were concerned with the same particular area of WordNet. Since the
whole TCM was considered, differences in one particular area were sometimes drowned out by
similarities in many other areas. For example, eat showed selectional preferences for person at
the subject slot, and food at the object slot. These classes are both beneath the entity class which is
only one of the eleven roots of WordNet. When the argument head data was combined, there was
a high probability at the entity class vicinity and the system incorrectly identified eat as taking the
causative alternation. Moreover, in some cases our acquired preferences were not discriminatory
enough. The TCMs were not always low enough for a distinction to be made between important
subclasses. For example, for melt, cook, burn and boil, the distinction between person subject slot
and substance object slot was lost by a tree cut above these classes.

The remaining 39 verbs after filtering were:
add, begin, break, change, choose, close, compare, continue, cost, demand, develop, end, feel,
hide, imagine, improve, increase, investigate, live, march, nod, observe, open, perform, plan,
read, record, repeat, settle, shout, shut, sing, start, steal, survive, wash, win, work, write.

Of these there were 16 positive candidates and 23 negative candidates. The errors are shown
below:-

1. false positives: develop, record, steal, wash

2. false negatives: continue, end, march, settle, start

The filtering process resulted in a marked increase in accuracy, although of course at the ex-
pense of coverage (see table 5.8). We abandoned it for the rest of our experiments because of the
reduction in coverage.

Conative:

This alternation is shown in example (25) above. The test sample was the same as that which we
used for the LO experiments in section 5.8.4 above. As before, we evaluated performance in two
experiments which were specific to the prepositions at and on.

The results are shown in table 5.9. The table gives the breakdown between true positives (TPs),
true negatives (TNs), false positives (FPs) and false negatives (FNs). The accuracy for the conative
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Table 5.8: Filtering out difficult candidates

accuracy sample coverage
Without Filtering 63% 100%
With filtering 77% 35%

Table 5.9: Conative results
on at

TPs bang cut press pull pull push shoot tug
TNs work
FPs agree move remain call move remain work
FNs

on sample was 62%. All errors were false positives and moreover only one negative case was
identified. The abundance of false positives arose because the PP frame, specific to on, had such
a low frequency compared with the transitive frame. The direct object data swamped the PP data
when the data at the target slots were combined for the MDL method.

In addition to the problem of disparate relative frequencies of the target slots, some verbs, such
as agree, take the same noun in the PP and transitive frames, see for example (31) below, without
this being a case of the conative alternation. Levin (1993) observed that the conative alternation has
specific semantic constraints. The verb in the intransitive PP frame describes an attempted action
without specifying whether the action was actually carried out. Participating verbs involve notions
of contact and motion. Two new informants, not our original judges, classified agree on positively
as taking the alternation. Making distinctions between verbs like push, which does participate in
the conative, and verbs such as agree, which does not, requires knowledge of the subtle semantic
prerequisites for the alternation. The new informants were not aware of the semantic prerequisites
specified by Levin. The original two informants were. The automatic method likewise is not
sensitive to these prerequisites. It simply identifies cases where the slot fillers seem to be capable of
switching position. It may be that some additional a priori knowledge would improve accuracy for
identifying alternations with specific semantic constraints. Specification of the semantic properties
of the verbs would help only if the semantic properties could be detected automatically. The
semantic properties of the arguments could be detected automatically, using acquired selectional
preferences such as ours. However, the semantic properties of the arguments vary depending on
the participating verb, and do not usually form a coherent semantic type across all participating
verbs.

(31) a. They agreed the cost.

b. They agreed on the cost.

Accuracy for conative at was only 50% (the same as our random baseline). No negative deci-
sions were made by the system. When the outcomes of these two experiments were put together,
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Alternation Average Frequency Ratio
Causative 1.16
Conative ‘on’ 28.99
Conative ‘at’ 32.72

Table 5.10: Average frequency ratios

the accuracy obtained for the full 16 candidates was 9
16 � 56 � 25%. This was not a very encouraging

result.

Relative Frequencies and the MDL Approach

Comparing the description length costs of the TCMs relied on the alternating slots having similar
frequencies. Lapata (1999) referred to verbs which have similar frequencies of alternating SCFs
as having a high degree of typicality. The typicality of a verb for an alternation will depend on
the verb and the alternation. We calculated an average frequency ratio for each of the alternations
we experimented with. This used the frequency ratio between the frames for a given alternation,
averaged over all verbs, as shown in equation 5.24. The calculation is specific to the alternation
(X). We took the average for all candidate verbs in the test sample (verbs) of the ratio between
the most frequent frame (SCF1) for the alternation and the less frequent frame (SCF2). SCF1 and
SCF2 were determined with respect to the alternation; they were not verb specific. The average
frequency ratio is minimised when the alternating SCFs have equal frequencies. At the limit, this
gives a value of 1. The value increases as the difference between the frequencies of the alternating
SCFs increases.

average frequency ratioX �
∑v � verbs

freq � v� SCF1X �
freq � v� SCF2X �
� verbs � (5.24)

The average frequency ratio for the causative and conative alternations are given in table 5.10.
The ratio for alternations which involve specific prepositions, such as the conative, was high

(not close to 1). This explains the poor performance using the MDL technique for these alterna-
tions. The MDL technique is expected to work for verbs where the alternation is typical. Neverthe-
less, there are many verb and alternation combinations which have disparate frequencies between
the alternating frames, yet are provided as exemplars for the alternation by Levin. For example,
cut at is provided as a prime example of the conative by Levin (1993, p41), however the ratio
between the transitive frame and PP at frame was 657

4 in lexicon A. This suggests that Lapata’s
choice of the ‘typicality’ terminology was not altogether appropriate

We now turn to the similarity approaches, which permit diathesis detection regardless of the
typicality of an alternation.

5.8.7 The Similarity Approach - Comparing Probability Distributions

In this subsection, we compared the selectional preferences at the target slots, represented as prob-
ability distributions, for diathesis alternation identification. The results discussed here are obtained
from lexicon D. It was hoped that a wider variety of alternations could be covered with a larger
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Figure 5.3: A union base cut

quantity of data and a more accurate parser. However, out of the alternations in table 5.4, only the
locative preposition drop (Levin 1.4.1) had sufficient candidates meeting the frequency threshold
to be included for experimentation. This alternation behaves as in example 32.

(32) a. She crossed over the river.

b. She crossed the river.

The similarity approach compares the PTCMs at the target slots of the SCFs specified by the
Levin–SCF mapping. The measures of distributional similarity which we discussed in section 5.5.3
require discrete probability distributions over the same set of items. PTCMs cover the leaves of
WordNet, but can do so by cutting across different levels of the WordNet hierarchy. Before appli-
cation of a similarity measure, the two probability distributions must be mapped to a common set
of classes for comparison. To do this we used a base set of classes across WordNet. Two prob-
ability distributions over this base cut were then produced from the original PTCMs at the target
slots. This was performed by using the method outlined on page 33 in chapter 2 for finding the
probability of a class from the estimates on a PTCM above or below this class.

We used two different ways of identifying the base classes. The first was simply to take a
base cut at the eleven root classes of WordNet. We refer to this as the ‘root base cut’. The other
method that we used was to produce a base cut from classes of the two PTCMs. This was obtained
by taking all classes from the union of the two PTCMs which were not subsumed by another class
in this union. Duplicates were removed. This is termed the ‘union base cut’. A union base cut
is illustrated in figure 5.3 for an imaginary hierarchy. This union base cut is obtained from the
union of two cut models, A and B, given in this diagram without probabilities. A new PTCM is
then produced from each original PTCM. The new PTCM contains the classes on the union base
cut. The probabilities for these classes are calculated using those on the original PTCM. The
probability for a superordinate class is obtained by combining the probability estimates for all of
its hyponyms on the lower cut. The probabilities for the original PTCMs A and B are shown in
figure 5.4 alongside the new PTCMs formed with the union base cut.

In these experiments, we based the gold standard for evaluation on the decisions of four human
judges. All judges were given a list for each alternation for which we had sufficient candidates
from the data. These alternations were:

� causative
� conative (at and on)
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Figure 5.4: New PTCMs at the union base cut

Alternation kappa z significance (p)
Causative 0.71 12.4 0.00003
Conative on 0.60 3.1 0.001
Conative at 0.67 3.5 0.00023
Locative preposition drop 0.35 1.6 0.0548

Table 5.11: Human agreement



Chapter 5. Identifying Diathesis Alternations 151

� locative preposition drop

The verbs were sorted alphabetically in these lists. The judges had to decide on participation
for each candidate. The ‘don’t know’ category was permitted. The kappa statistic was calculated
for each alternation and the results are shown in table 5.11. The judges showed significant levels
of agreement on all alternations except for the locative preposition drop. For our experiments we
required at least 3 candidates in each category (positive or negative) for the Mann Whitney U test.
The locative preposition drop had 3 candidates in each category with more than 75% agreement.
This alternation was not used because the sample was so small and because the level of agreement
between judges was not significant.

The mean was used as a threshold on similarity scores for determining accuracy. The median
was also used. When calculating the mean and accuracy, we ensured there were an even number
of positive and negative candidates after verbs without sufficient agreement were removed. This
was done by randomly removing the surplus number of candidates from the larger category.

Causative

118 candidates were selected from the data. These were evenly split between positive and negative
candidates, according to us. After removing those with less than 75% agreement we had 46
positives and 53 negatives remaining. Seven of the negative candidates were selected at random
and removed from the negative sample before this was used for determining accuracy using the
mean as a threshold. The candidates remaining were:
positive sample (46 verbs) :
accelerate, bang, bend, boil, break, burn, change, close, cook, cool, crack, decrease, drop, dry,
end, expand, flood, fly, improve, increase, land, march, match, melt, open, repeat, ring, rip, rock,
roll, shatter, shut, slam, smash, snap, spill, split, spread, start, stop, stretch, swing, terminate, tilt,
turn, wake.

negative: (46 verbs)
add, admit, answer, ask, attack, believe, borrow, catch, choose, climb, cost, declare, demand,
drink, eat, expect, feel, help, imagine, kick, knit, know, miss, notice, outline, pack, paint, pay, per-

form, plan, practise, prescribe, proclaim, pull, read, remain, remember, sing, steal, suck, survive,
understand, warn, wash, win, write.

Table 5.12 shows the results for detection of the causative alternation using the four similarity
measures described in section 5.5.3. The root base cut was used in all cases and the PTCMs at the
target slots were produced without WSD on the input data. The sample was large enough for a z
score to be obtained from the ranks of the Mann Whitney U test. The z score was looked up in
a table of the normal distribution to provide the probability (p) of obtaining the score by chance,
i.e. if there were no relationship between the similarity measure and participation. Values of p less
than the 0.05 16 significance level indicated that there was a significant relationship between the
similarity measure and participation. Values of p less than 0.01 were highly significant. The results
for all similarity scores for the causative were all highly significant. The final two columns in the

16This represents a 95% confidence level for a one-tailed significance test.
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Mann Whitney z significance (p) mean median
ED -4.2 0.0003 72 65
cosine 3.7 0.00011 65 63
L1 norm -4.05 0.0003 68 63
αSD -4.03 0.0003 71 63

Table 5.12: Causative identification with 4 similarity measures

table show the accuracy obtained when we used the mean and median respectively as thresholds
to determine participation. Accuracy exceeded the 50% baseline in all cases. Performance was
best for ED, with αSD a close second. These two measures were used in further experiments with
the causative. The mean outperformed the median in all cases.

Causative results with more specific cut models

In section 5.8.6 on page 146, we observed that selectional preferences at different grammatical
slots often involved the same area of WordNet. This typically occurred below the WordNet root
entity which encompasses classes such as person, object and food. The root base cut could not
differentiate the probability distributions in these cases because only the probability estimates at
entity were compared.

We investigated the effect of (i) using a more specific base cut and (ii) WSD of the input data.
We experimented using the union base cut and the root base cut without WSD, and also using
each of the three WSD options described in chapter 3. The results for the ED similarity measure
are displayed in table 5.13. Those for the αSD similarity measure are given in table 5.14. The
mean performed better than the median in most cases, but not all. For ED the results were rather
disappointing. WSD and the union base cut made matters worse rather than better. When αSD was
used, the combination of the union base cut and FirstS WSD did improve matters a little. However,
these differences in accuracy were not significant, using the chi-squared test.17

Conative

The conative sample was rather small after disregarding those verbs with less than 75% agree-
ment between judges. If we had separated the conative experiment into two preposition specific
experiments we would have had just the statutory number for the small sample size of the Mann
Whitney U test (we only had 3 positive candidates). Instead we combined the data using positive
and negative candidates with specified prepositions. The four similarity scores were used with the
root base cut and no WSD as before. The results are given in table 5.15.

There was a significant relationship between all of the similarity scores and participation.
However, the difference between accuracy and the baseline was not significant (on the chi-squared).
This was due to the small sample size.

Conative results with more specific cut models

For completeness we show the results obtained using the union base cut and the WSD options as
before. The results using ED are in table 5.16 and those for αSD are in table 5.17. WSD increased

17The chi-squared test was used because we were comparing frequencies.



Chapter 5. Identifying Diathesis Alternations 153

root base cut
Mann Whitney z significance (p) mean median

NOWSD -4.2 0.00003 72 65
SPass -2.75 0.003 62 63
FirstS -3.29 0.0005 67 63
COMB -3.48 0.00023 68 65

union base cut
Mann Whitney z significance mean median

NOWSD -4.59 0.00003 72 70
SPass -3.10 0.001 64 63
FirstS -3.11 0.0009 65 67
COMB -2.81 0.0025 65 65

Table 5.13: Identifying the causative using ED with WSD options

root base cut
Mann Whitney z significance(p) mean median

NOWSD -4.03 0.0003 71 63
SPass -3.08 0.001 66 63
FirstS -3.5 0.00023 70 61
COMB -3.7 0.0001 67 67

union base cut
NOWSD -4.3 0.00003 73 70
SPass -1.9 0.0287 61 57
FirstS -4.4 0.00003 75 67
COMB -3.2 0.0007 64 61

Table 5.14: Identifying the causative using αSD with WSD options

Mann Whitney sum significance (p) mean median
ED 30 0.09 83 67
L1 norm 29 0.07 83 67
cosine 54 0.008 67 83
αSD 26 0.02 67 83

Table 5.15: Conative identification with 4 similarity measures
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root base cut
Mann Whitney sum significance mean median

NOWSD 30 0.09 83 67
SPass 29 0.07 67 67
FirstS 23 0.004 75 83
COMB 26 0.02 75 83

union base cut
NOWSD 33 0.197 67 67
SPass 32 0.1548 67 67
FirstS 26 0.0206 75 83
COMB 27 0.0325 75 67

Table 5.16: Identifying the conative using ED with WSD options

root base cut
Mann Whitney sum significance mean median

NOWSD 26 0.02 67 83
SPass 26 0.02 75 83
FirstS 26 0.02 67 83
COMB 22 0.002 83 83

union base cut
Mann Whitney sum significance mean median

NOWSD 34 0.2 58 67
SPass 26 0.02 67 83
FirstS 34 0.2 58 67
COMB 22 0.0022 83 83

Table 5.17: Identifying the conative using αSD with WSD options

accuracy when αSD was used, however these differences in accuracy were not significant, using
the chi-squared test.18

Error Analysis for the Mean and Median Thresholds.

The results obtained were dependent on the thresholds taken. On the whole, performance was
better for the mean than the median for the causative experiments, but there were cases where
the converse was true. For the conative experiments, the median outperformed the mean in many
cases.

It is interesting to look at the effect of the threshold used on the types of errors made. Errors
were classified as false positives or false negatives. False positives arose when a non-participating
verb was wrongly identified by the system as taking the alternation. False negatives occurred
when a participating verb was not identified as taking the alternation by the system. When the

18The chi-squared test was used because we were comparing frequencies.
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similarity score
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  close at,  operate at,  open at,  build on,  push at,  pull at,  shoot at,  press on,  model on, pull on, place on,  tug at 
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0.165

FN errors FP errors

Figure 5.5: Using the median as a decision point

median was used as a threshold, the number of false positives and false negatives were evenly
balanced. This is because the median threshold is, by definition, taken midway between the test
items arranged in order of their similarity scores. There were an even number of items on either
side of the decision point, and an even number of positive and negative candidates in our test
sample. Thus, the errors on either side of the decision point were equal in number. This scenario
is illustrated in figure 5.5, the data is taken from the conative experiment using ED with the root
base cut and no WSD. The decision of the judges is indicated in the row marked classification, P
for positive and N for negative.

Across the entire set of experiments, there was typically a larger number of false positives than
false negatives when the mean was used as the threshold. The breakdown between error types is
displayed in table 5.18 for a subset of our experiments. This is shown for experiments detecting
the causative and conative alternation with the ED similarity measure, using the root base cut and
no WSD, but was typical of all the experiments. The table gives the threshold, number of false
positives, number of false negatives and accuracy when using both the mean and median. The
mean usually produced a higher accuracy than the median, but gave rise to an increase in false
positives. The mean was typically higher than the median for all measures except the cosine. The
cosine is a true measure of similarity, as opposed to a measure indicating dissimilarity, and for
this score the mean was lower than the median. These results indicate that the scores were not
normally distributed, since in a normal distribution the mean and median are the same.

The polysemy of the verbs may be one explanation for the large number of false positives. The
SCFs and data of different senses should ideally not be combined, at least not for coarse grained
sense distinctions. We tested the false positive and true negative candidates to see if there was
a relationship between the polysemy of a verb and its misclassification. The number of senses
(according to WordNet) was used to indicate the polysemy of a verb. The Mann Whitney U test
was performed on the verbs found to be true negative and false positive using the root base cut and
no WSD options. A significant relationship was not found between polysemy and misclassification
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alternation threshold type threshold accuracy % num FPs num FNs
causative median 0.23 65 16 16
causative mean 0.28 72 19 7
conative median 0.16 67 2 2
conative mean 0.21 83 2 0

Table 5.18: Error analysis on experiments using ED, no WSD and the root base cut

5.9 Summary and Conclusions

Diathesis alternations are systematic variations in the syntactic realizations of verbs. They are
systematic in that the same alternation occurs for a number of verbs having some similar seman-
tic component. In RSAs, a particular semantic role will occur in different grammatical slots in
the alternating realizations. These alternations are neatly exemplified using the same lexemes in
alternating variants, as in example (33).

(33) a. She began the meeting.

b. The meeting began.

Detecting genuine participation is not straightforward. Automatic parsing technologies make
it possible to identify instances of the alternating frames. For some alternations (the dative and
benefactive) this is sufficient for correct identification. However, due to sparse data the same lex-
emes may not occur in both variants in the corpus data at hand. Moreover, some lexical items
cannot occur in both variants, even for verbs which do participate. The anticipated difficulties are
corroborated by evidence from the lemma-based method described in section 5.5.4 with experi-
mental results presented in section 5.8.4.

In this chapter, we described and demonstrated two methods for observing participation in
RSAs using selectional preferences. The preferences provided generalisations over the lexical
fillers given any particular SCF and slot combination.

The two methods were the MDL method and the similarity approaches. The MDL method
relies on a comparison between the cost of separate models for the alternating slots and the cost
of a model if the data is combined. This showed encouraging results for the PTCMs, but did not
work well for verb and alternation combinations with substantial differences in the frequencies of
the alternating frames.

The similarity measures are more generally applicable. We discovered a highly significant
relationship between measures of distributional similarity and participation in the causative and
conative alternations. We obtained a rudimentary idea of the level of accuracy by using thresh-
olds to determine participation. The arithmetic mean and median thresholds were used. If such
thresholds were to be applied in earnest then they would need to be obtained from held out data.
The mean produced slightly better results for the causative, but a higher proportion of false pos-
itives. Accuracy of 72% was obtained for the causative alternation using the ED score. This was
significantly above the baseline of 50%. Accuracy for the conative alternation was 83% but the
difference compared to the baseline was not statistically significant owing to the small sample size.
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Neither the greater specificity arising from WSD of the input data nor comparing cuts at a more
specific level (the union base cut) improved matters significantly.

The most important impediment to using these methods for discovering participation is sparse
data. Larger corpora are required if we are to use this method with a wider set of alternations,
and with less common verbs. Our use of automatic methods for producing the SCF lexicon and
preferences allows this with human effort only required for selecting and tagging candidate verbs
for evaluation.

There are other possibilities for overcoming the sparse data problem, other than the corpus
size. Briscoe & Carroll (1997) identified the statistical filter as the main source of error in their
SCF acquisition system. More attention to this component could substantially increase the quantity
and quality of the candidates selected.

An important characteristic of all the alternations in table 5.4 on page 138 is that PPs are
involved in at least one alternating SCF. The preferences for these slots are acquired with reference
to the specific preposition. Thus, in the conative experiments we have considered candidates
with respect to a particular prepositions (on or at). This drastically reduces the quantity of data
available for PP frames for the candidate verbs. There may be ways around this. It may be
worth investigating if grouping prepositions would help for alternations involving PPs. 19 The
prepositions could be grouped by hand, or clustered automatically using distributional evidence.

False positives were the largest source of error in our experiments. Although we did not find
a significant relationship between polysemy and misclassification, it may be that our experiment
was not successful in isolating the types of verb sense that give rise to the false positives.

Aside from looking at verb senses, another strategy which might reduce the false positives is
to make use of more stringent criteria for diathesis alternation detection. Semantic criteria may
be useful, however, semantic properties of the verbs would be difficult to detect automatically.
Semantic properties of the arguments vary depending on the participating verb, and do not usually
form a coherent semantic type across all participating verbs.

We believe it will help to look at sets of alternations collectively, rather than one alternation at
a time. Levin (1993) identified classes of verbs which participate in particular sets of alternations.
She also indicated constructions which correlate (positively or negatively) with other diathesis
patterns. For example, she pointed out that the ‘X’s Way Construction’ (Levin, 7.4) does not
occur for unaccusative verbs. If the evidence for a particular verb is combined, using observed
alternations, then we might predict unobserved alternations using Levin’s classification. We would
of course need more observed evidence. The alternations in table 5.2 on page 135 require more
syntactic evidence for identification. Evidence at the phrase level is not currently retained in our
SCF lexicon. However, the SCF acquisition system could be modified so as to include it. Syntactic
evidence, such as possessive markers, should be reliably identified. These could narrow the search
for participants for these alternations considerably. Perhaps to the extent already seen with the
benefactive and dative alternations, where semantic evidence is not even required.

Our method of detecting participation could be used alongside other, complementary cues.
For example, Resnik (1993a) showed the relationship between the strength of the selectional
preference of a verb and its participation in object drop alternations. These alternations are the un-

19One example where this might work is put which subcategorizes for a locative PP. It remains to be seen whether
enough other verbs also subcategorize for PPs headed by a preposition class.
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expressed object alternations (Levin 1.2). One could use this relationship alongside our methods,
which identify RSAs. Together, methods such as these could be used for identifying the correct
classification of a verb within Levin’s taxonomy.



Chapter 6

Conclusion

This chapter is organised into two sections. The first section summarises the contributions of this
thesis and the second section outlines directions for future research.

6.1 The Contributions of this Thesis

The main contribution of this thesis has been to show how automatically acquired SCFs and selec-
tional preferences can be combined to predict verbal participation in diathesis alternations (chapter
5). This is an important contribution to NLP research because diathesis alternations lie at the bridge
between syntax and lexical semantics. Information about participation can be used to predict un-
seen subcategorization behaviour and to help classify verbs semantically (Levin, 1993).

To identify potential candidates from their syntactic behaviour, we used the SCF acquisition
system of Briscoe & Carroll (1997). This provides verbal entries classified according to an in-
ventory of 163 SCF classes. Each entry includes the argument head data found at each slot in the
training data for the given verb and SCF combination. For selectional preference acquisition, we
modified a system for acquiring preferences as tree cut models (TCMs) across WordNet, originally
devised by Li & Abe (1995, 1996). We experimented with identification of proper nouns (as de-
scribed in chapter 2) and automatic WSD of the argument head data (as described in chapter 3).
Previous systems have, on the whole, acquired preferences with hand disambiguated data (Ribas,
1995a), disambiguation assisted by an MRD (Pozanski & Sanfilippo, 1996) or, more commonly,
no WSD (Resnik, 1993a; Li & Abe, 1998; Abe & Li, 1996; Grishman & Sterling, 1993; Pereira
et al., 1993; Rooth et al., 1999). Our system can be run without any WSD, or with two distinc-
tive WSD options. The first uses a first sense heuristic (FirstS) and the second uses an iterative
approach (SPass), where the preferences acquired from the raw data are used for subsequent WSD

on a second iteration. Others have also investigated iterative approaches (Abney & Light, 1999;
Clark & Weir, 1999). Our system can be run using a combination of FirstS and SPass (COMB).

We reported several formal evaluations of the selectional preference acquisition system in
chapter 4. The evaluations were performed to compare our preference models to those produced
by other researchers, and to compare the affect of various parameter options. We performed the
following formal evaluations:-
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1. Evaluation against the selectional restrictions provided in LDOCE. This evaluation was
problematic in three respects. Firstly, LDOCE provides hard constraints on the selectional proper-
ties of verbal entries, whilst our system used the frequency information available from the corpus
data to provide a system of selectional preference on a continuum. To overcome this, we applied
a threshold on our preference scores and compared the result to the LDOCE constraints, although
much information is, of course, lost in this way. Secondly, automatic preferences cannot possi-
bly cover phenomena that were not attested in the training corpus: this happens frequently since
LDOCE lists rare and specialised senses. Thirdly, the automatic preferences were penalised where
they related to genuine preferences which were omitted by the lexicographers. Despite these obvi-
ous shortcomings, we performed the evaluation to find out the overlap between the automatically
acquired preferences and ones specified a priori by lexicographers. Mismatches of the second
type, where LDOCE restrictions were not found in the corpus data, affected recall. Mismatches
of the third type, where TCM preferences were not recorded in LDOCE, affected precision. The
precision and recall figures showed the extent to which our parameter settings increased the range
of preferences observed or were more conservative and covered only the more salient preferences.

2. Evaluation against examples provided in CIDE. We calculated the proportion of the dic-
tionary examples, listed for a sample of verbal entries, which were covered by the TCMs. For
this evaluation, the dictionary examples were covered by the TCMs if the argument head at the
specified slot in the example belonged (directly or indirectly via a hyponym relationship) to one
of the classes on the TCM above a stipulated threshold. This was compared to a baseline which
was determined by the average proportion of classes which have preferences above the threshold
on the TCMs for the verbs in the dictionary examples. This baseline gave an indication of how
discriminatory the TCMs were. This evaluation, like the LDOCE one, was problematic in that rare
or specialised senses reported in the dictionary may not be attested with sufficient frequency in the
training data, if at all. Nevertheless, it provided a way of comparing the behaviour of the different
parameter settings.

3. WSD. This task was used because of the availability of appropriate test data (SemCor), and
because we already had the machinery in place for WSD, since we used preferences in one of our
options for WSD of the argument head data. We investigated how preferences performed at WSD,
and how the various parameter options affected performance. A further reason for this method of
evaluation, is that many other researchers have also applied automatically acquired preferences to
the WSD task. Direct comparison of reported results is fraught with difficulties because different
test and training data have often been used. However, in addition to the SemCor evaluation, we
entered our preference acquisition system, with one parameter setting, for the SENSEVAL compe-
tition (Kilgarriff et al., 1998). Our system (Carroll & McCarthy, 2000) had a similar performance
to the only other system (Kilgarriff & Rosenzweig, 2000) that used selectional preferences alone.

4. Pseudo-disambiguation. Many of the proximity-based semantic classifications, which can
be used as selectional preference models, have been evaluated on the task of choosing between
genuine and artificially produced word pairs. Our system performed less well than many systems
which have used automatically produced classifications (Pereira et al., 1993; Rooth et al., 1999),
apart from Grishman & Sterling (1993). Grishman & Sterling obtained a very low recall (34%)
set against a low error rate (9%), however they evaluate using erroneous and correct parses. It
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is therefore inappropriate to compare our results with those of Grishman & Sterling because of
differences in the task. Direct comparison with the results of Pereira et al. and Rooth et al.
is awkward because of substantial differences in the task. Our preferences were obtained using
substantially smaller quantities of training data, with no frequency threshold applied to the lemmas
involved and were tested on a different test set. It is likely that, even given the differences in the
training and test data, preferences acquired using a manmade classification, like WordNet, will
be less accurate than those acquired within an automatically constructed classification (Li & Abe,
1996).

This task did not provide any significant differences for any of the parameter options which
were tried.

The LDOCE and CIDE evaluations have not been used in other research reported in the litera-
ture. We used them to highlight differences in the TCMs brought about by the various parameter
settings, rather than to provide a figure of merit for the TCMs.

6.1.1 Modifications to the Selectional Preference Acquisition System

The following modifications were made to the basic approach devised by Abe & Li (1996):-
1. The creation of new leaves at internal classes. These were created for all hyperonym classes

of WordNet. This was done so that all word senses fell under the classes on any TCM across
WordNet. This avoided Li & Abe’s strategy of pruning WordNet at classes where a word with
direct membership of the class occurred in the argument head data. Their approach resulted in
many TCMs being restricted to the WordNet roots at some point along the cut, because words at
these roots, for example entity and location, occurred frequently in the BNC data.

Creating the new leaves gave a substantial reduction in the number of root cuts (TCMs at the
dummy root which we created above the 11 WordNet roots). In a sample of 30 verbs, Li & Abe’s
strategy resulted in 6 root cuts (20%), whereas the strategy of using leaves for all internal classes
did not give any root cuts for this sample. The effect of the latter strategy is to permit MDL to find
the optimal level of generalisation, rather than restrict it to a rather shallow version of WordNet.

2. Differences in thresholding for the ATCMs. Alongside the previous modification, we
changed the method of thresholding for the ATCMs so that classes from the prior model which
were below the threshold were removed before calculation of the description length for the entire
TCM. This was done to reduce the search space for efficiency purposes. It reduced the search
space but, as a consequence, classes with a low prior probability were not considered for the
ATCMs. This was not an ideal modification but one made to compensate for the additional search
space encountered when avoiding Li & Abe’s method of pruning. There was no significant differ-
ence in the precision and recall of the Li & Abe method on the WSD task, compared to our method.
However, our method did allow a wider coverage. A class probability threshold was not applied
when obtaining either the LLRTCMs or the PTCMs.

3. Log-likelihood ratio models (LLRTCMs). We added a new type of TCM which incorporated
the binomial log-likelihood ratio test (LLR) for finding the optimal cut, and as a preference score
on the cut models. This was a departure from MDL, since the description length no longer reflected
the number of bits to describe the model and data. However, there is a relationship between MDL

and the new models since the log-likelihood ratio can be used as a heuristic, in place of full MDL
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methods (Dunning, 1993). We devised the LLRTCMs because LLR has been reported to be better
at dealing with rare events than many other measures, including mutual information which the
association score is based on.

The LLRTCMs had fewer root cuts than the PTCMs and ATCMs, giving better coverage of
the data. For the verb and slot combinations where the ATCMs did provide preferences below
the dummy root, the LLRTCMs were usually more conservative than the ATCMs. However, in
cases where a verb has very strong preferences, the LLRTCMs were sometimes more specific and
intuitive. The LLRTCMs were frequently more specific than the PTCMs. There were no significant
differences in performance detected on formal evaluation between the ATCM, PTCM and LLRTCMs.

4. We experimented with the named entity recogniser of the GATE system (the VIE NE recogni-
tion system in version 1.1) for classifying proper nouns. The classified proper nouns were mapped
to WordNet classes. ATCMs acquired with proper noun recognition were compared to ATCMs ac-
quired using only the common nouns, and some pronouns. The proper nouns were discarded in
the latter case. To our knowledge, this was the first use of software for recognising proper nouns
within a selectional preference acquisition system.

Proper noun recognition increased the quantity of training data, which in turn increased cover-
age by reducing the number of root cuts. However, although on the SemCor evaluation, recall was
improved slightly, precision (compared to the precision baseline) was reduced. These differences
were not significant. For this reason, and because of the considerable computational cost of the
proper noun recognition software and problems encountered when processing long sentences, the
majority of work reported here did not use proper nouns. The accuracy of the named entity com-
ponent, and robustness of GATE may well have improved in subsequent versions. For diathesis
alternation detection, one of the main obstacles is data sparseness. Using proper noun data will
help alleviate this and so further work in this direction is warranted.

5. For diathesis alternation detection, selectional preferences are required specific to the SCF,
as well as to the slot and the verb. This is simple to achieve with the Briscoe & Carroll SCF

acquisition system, since this provides the argument head data at the relevant slot within entries
for a specified verb and SCF combination. For general evaluation of the selectional preference
acquisition system, we evaluated TCMs specific only to the slot and verb. This made comparison
easier with the other preference acquisition systems reported in the literature, since these do not
stipulate the SCF. To see the effect of stipulating the SCF on preference acquisition, we compared
selectional preferences acquired at the direct object slot of the � �	� ������
 SCF with those acquired
at the direct object slot generally, on the SemCor WSD task. There were no significant differences
in recall or precision between the two sets of models observed on this task. The reduction in
argument head data when stipulating the SCF was compensated for by the reduction in noise of the
argument head data.

6.1.2 Selectional Preference Acquisition and WSD

WSD techniques were sought for disambiguation of argument head data which did not carry ex-
cessive computational demands for unsupervised training, nor any significant demands on human
effort for supervised training. We required a disambiguation method applicable to as large a pro-
portion of the argument head data as possible. It was felt that reliability and precision of the WSD
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could be compromised in the interests of tagging a substantial proportion of the argument heads
in a reasonable amount of time. This was acceptable because, for preference acquisition, WSD is
performed over a set of argument heads collectively. We used two techniques in isolation:

1. FirstS– the first sense heuristic. This heuristic used the frequency estimates provided from
SemCor. The first sense was chosen provided that three additional constraints were met. These
limited the application of this heuristic to nouns with a clear predominant first sense and where
the noun was not reported as being problematic for human taggers.

2. SPass– The selectional preferences acquired from the ambiguous argument head data were
used to disambiguate the argument head data which was then input a second time to the selectional
preference acquisition system.

These two techniques were also used together: the COMB option. For this option, the SPass
technique was applied to nouns which did not meet the constraints for the FirstS technique.

The WSD options increased the homogeneity of the argument head data plotted in WordNet,
typically this resulted in the MDL technique selecting more specific cuts. For verb and slot combi-
nations where there were no strong preferences for the initial input data, the SPass technique could
do little to improve matters. However, where there were clear areas of preference, these were re-
inforced by SPass. FirstS resulted in preferences being observed more readily. If there were any
predominant collocates for a particular verb and slot combination, for example open the door, then
there was a risk of the FirstS technique resulting in erroneous preferences. This happened if the
FirstS technique chose the wrong sense for the noun in the collocation. It is safer to use the SPass
technique for cases with strong collocations at a particular slot.

Generally speaking, there were no significant differences in precision and recall on the WSD

and pseudo-disambiguation evaluations between the WSD options, including the option NOWSD

which does not perform any WSD. However, coverage was increased by WSD because of the
reduction in TCMs with cuts at the root. The FirstS option did improve precision and recall in situ-
ations with particularly sparse data, notably at the PP slot where we acquired preferences specific
to the preposition.

Finally, we agree with Resnik (1997) that selectional preferences are not a panacea for WSD

of nominal argument heads. However, they may help disambiguation when combined with other
knowledge sources (Wilks & Stevenson, 1998b). Interestingly, verbal predicates are reported to
be disambiguated quite well by their argument heads (Federici et al., 1999; Manning & Schütze,
1999; Stevenson, 1999). This would be worth considering further if disambiguation of verbs is to
be investigated for diathesis alternation identification.

6.1.3 Diathesis Alternation Identification

In chapter 5, we demonstrated that automatically acquired SCFs along with selectional preference
models can be used to establish whether a verb participates in a given alternation. Indeed, for
alternations with distinctive SCFs, such as the dative and benefactive, the syntactic information
alone was sufficient for identification. We demonstrated that, in other cases, such as the causative
and conative, it is necessary to have selectional preference models as well. The TCMs provide
evidence that arguments having a particular semantic type switch between different grammatical
slots in the alternate realizations.
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One method we proposed for incorporating the semantic information was to use the MDL costs,
or description lengths, calculated when obtaining the TCMs. In this method, the description lengths
for the TCMs at the alternating slots are combined and compared to the description length of the
TCM that is obtained when the data at the separate slots is combined (the combined model). If the
cost for the combined model is less than the combined costs of the separate models then partici-
pation is predicted. This worked for the causative alternation because the more homogeneous the
data was, the cheaper the cost.

A significant problem with this method when using the ATCMs was that the results were radi-
cally affected by the choice of data for the prior model (p � c � ). The LLRTCMs were also problematic
for this method, since the LLRTCM cost is based on a heuristic and is not a true MDL description
length calculated in terms of the number of bits needed to encode the model and data. There is
no clear interpretation of a combination of costs from two separate LLRTCMs. Not surprisingly,
applying this approach to the LLRTCM costs produced atrocious results.

The approach achieved reasonable results when applied to the PTCM costs for detecting the
causative alternation. However, for other alternations, such as the conative, this method was prob-
lematic because of large differences between the relative frequencies of the alternating SCFs. The
data for the rare frame was swamped by the data for the predominant one, resulting in a substantial
number of false positives.

There is an implicit threshold when using this method. This threshold is at the combined cost
of the separate models. The cost of the model for the combined data has to be below this threshold
for a verdict of participation. This threshold makes the most sense in MDL terms, however, it
is possible that better results might be obtained if a different threshold was used. This could be
empirically determined. Setting a threshold somewhere below the cost of the separate models
makes the task more stringent, and will reduce the number of false positives.

We proposed a second method in chapter 5 for using PTCMs to detect RSAs. In this method,
we compare the probability distributions at the PTCMs of the alternating slots in the alternating
frames. Using probability distributions avoids the problem of different relative frequencies of the
target SCFs. We established a significant relationship between the similarity of the PTCMs at the
target slots and participation using a number of measures of distributional similarity. To obtain
figures for precision and recall we used a threshold on the similarity score to determine verbal
participation. We experimented with results obtained when using both the mean, and the median,
of the scores for the threshold.

As a baseline, we compared the two approaches for identifying verbal participants with TCMs
to a baseline approach using a measure of lemma overlap (LO) of the argument head data at the
target slots. There was not always a significant relationship between LO and participation. 1 Iden-
tification of participants was performed by comparing the LO score to a threshold. As with the
experiments using distributional similarity scores and the PTCMs, we obtained the thresholds us-
ing means and medians from the sample of positive and negative candidates.

In our results, neither comparing the TCMs at a more specific level than the WordNet roots, nor
1In the experiments reported here, we only obtained a significant result with one out of four data sets. In more recent

work (McCarthy, 2000) we obtained a significant result in one out of two data sets. The significant result was obtained
at a lower significance level than that obtained for the class-based experiments. The lemma-based result was significant
at the 95% level, whereas the class-based experiments were significant well above the 99% level.
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using WSD to achieve more specific TCMs, significantly improved identification. These findings
imply that although it is best to generalise to semantic classes, rather than use the argument head
lemmas directly, one can do as well by simply calculating the probability distribution at the Word-
Net roots, given a particular slot and SCF. It does not appear necessary to seek a more intuitive
level of generalisation using MDL. However, it is possible that some verbs might require more
specific TCMs. This needs further investigation. Such information could potentially be used in the
encoding and consequent description length cost.

In the MDL experiments, we tried ignoring verbs where the semantic type of the arguments
was similar when the target slots co-occurred in the same frame. This increased accuracy, at the
expense of coverage. For example, this is the case for the causative alternation since the object
in the transitive switches to occupy the subject slot in the intransitive. Subject and object slots
are both present in the transitive frame. We obtained TCMs at these two slots in the transitive
frame and filtered out verbs with similar argument heads across these two slots before applying
our approach to the object of the transitive and the subject of the intransitive. Frequently the
apparent semantic similarity between co-occurring slots with different grammatical roles in a SCF

arose because the differences were within one specific area of WordNet. These differences were
not detected because they were overshadowed by similarity at the majority of the classes under the
cut. Our approach considered semantic similarity using corpus data in terms of WordNet structure.
Automatic classifications might be better placed to highlight semantic similarities and differences
apparent in the data.

6.2 Directions for Future Research

In this thesis, we have showed that automatically acquired subcategorization information and se-
lectional preferences can be used to detect role switching alternations. A significant advantage
of using probabilistic preference models was that measures of distributional similarity could be
used. There was no requirement for a human to specify a priori semantic cues. The most obvious
obstacle to automatic acquisition of alternations is the sparseness of the data. This restricted our
experiments to a limited set of alternations because we needed a reasonably sized set of positive
and negative candidates that took the required SCFs for evaluation purposes. The lack of candidates
for many alternations arose because of a combination of the following factors:

� for many alternations, there are only a few verbs which participate
� many alternations involve rare verbs
� for many verbs which participate in an alternation, one of the alternate forms is rare

The first two issues were a problem for evaluation, since we needed a large enough sample of
candidates to determine if our method behaved significantly better than a random split. The second
issue is also a problem for application, if one wishes to handle rare verbs. The third problem is
a problem for both evaluation and application. Problems of sparse data affect identification of
alternations because, even with relatively common verbs, one of the alternating variants may not
occur with sufficient frequency for selectional preference acquisition.
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Our method is generally applicable to RSAs and we predict that it will work with all such
alternations, provided that sufficient corpus data is available. Since our approach is fully automatic
we do not foresee a problem with obtaining and processing sufficient data.

In addition to increasing the volume of data, there are other directions for future research
which might increase coverage, or accuracy, or both.

The SCF acquisition system has a major impact on both coverage and accuracy. We obtained
our candidates for a given alternation by virtue of the verbs which were recorded with sufficient
entries at the alternating variants in the SCF lexicon. In recent work, Korhonen et al. (2000)
demonstrate that the SCF acquisition system shows a good deal of room for improvement due to
errors of the statistical filter. Many of the errors are shown to involve medium and low frequency
frames. Often, at least one of these frames will be involved in a given alternation. Improving
the accuracy of the statistical filter of the SCF acquisition system will shift some FNs, to become
TPs, thereby increasing the number of candidates with the appropriate SCF. Shifting FPs to TNs
will remove some erroneous candidates, and should increase precision for diathesis alternation
detection.

Levin (1993) has shown that groups of diathesis alternations can be used to classify verbs. The
alternation behaviour of class members is provided within her verbal classification. Thus, once a
verb is placed in the Levin taxonomy, one can predict unseen alternation behaviour. On the other
hand, evidence about alternation behaviour can be used to classify a verb within this taxonomy.
Research into combining the evidence from different diathesis alternations to classify a verb should
help in overcoming the sparse data problem and produce more reliable results. For our approach,
this amounts to devising a way of combining the evidence given by the distributional similarity
scores for groups of alternations known to be characteristic of a verb class. One possibility is
to cluster the similarity scores obtained over the full set of RSAs. Features for other alternations,
such selectional preference strength, which has been shown to be an indicator of the implicit object
construction (Resnik, 1993a), could also be input to the clustering process.

Many alternations for which we did not have sufficient data for experimentation involve prepo-
sitional phrases at the target slots. In the current system, the TCMs are acquired specific to the verb
and preposition combination for these slots. It would be possible to back off to preposition classes
in cases of sparse data. Preposition classes might be obtained manually, or by clustering preposi-
tions according to the distribution of nominal argument heads in the NPs that they subcategorize. 2

Backing off to preposition classes would reduce the sparse data situation but would also reduce
the accuracy of the system, as verbs that alternate do not necessarily do so with all potential prepo-
sitions.

There are many further modifications that could be made to the selectional preference acqui-
sition system. For example, one might investigate alternative ways of handling multiple parentage
in WordNet. However, from the research presented in chapters 2, 3 and 4, alterations to the selec-
tional preference acquisition system have not significantly affected diathesis alternation detection.
There are however three areas that would be worth further investigation:

2We performed some preliminary work in this direction using hierarchical clustering. Many of the preposition
classes were intuitive, for example since and until were grouped together. We have not applied this work to diathesis
alternation detection. One example where this might work is put which subcategorizes for a locative PP. It remains to
be seen whether enough other verbs also subcategorize for PPs headed by a preposition class.
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1. a more reliable method of disambiguating the argument head data

2. a method of disambiguating the verbs, and differentiating the SCF entries and TCMs accord-
ingly

3. use of an automatically constructed semantic hierarchy

The methods of WSD that we experimented with, handled a large proportion of the argument
heads, at the expense of accuracy. The more specific, and more intuitive, preference models
did not give rise to a significant improvement in performance for WSD, pseudo-disambiguation
or diathesis alternation detection. A reliable method of disambiguating argument heads might,
however, be useful in cases of sparse data. One possibility would be to concentrate effort on
finding a reliable method for WSD of frequent nouns, which cover a larger portion of the data,
rather than attempting to disambiguate all the argument heads. This might achieve better results
for verb and slot combinations with little data where, without disambiguation, the TCM is located
at the root.

Rudimentary WSD of the argument head data did not improve diathesis alternation identifica-
tion. One outstanding issue is whether disambiguating the verb forms might help. At the moment
SCFs, and therefore selectional preference models, are acquired with respect to a verb form, rather
than a verb sense. If one were to disambiguate the verb forms, obtaining an appropriate sense in-
ventory is a complicated matter. One would not want to separate related verb senses which might
occur as alternating variants. If an automatic clustering approach is adopted then a promising ap-
proach is to consider verb and argument head types together (Rooth et al., 1999), since verbs are
reported to be best disambiguated by their argument heads (Manning & Schütze, 1999). Soft clus-
tering permits a verb to belong to more than one class, with a probability distribution associated
with each verb over the classes in the classification (Pereira et al., 1993; Rooth et al., 1999). The
resulting classification highlights the salient classes (senses) for a verb form. There is a promising
aspect of clustering the argument heads alongside the verbs with specified SCF slots, with regard
to diathesis alternation identification. A verbs alternation behaviour is brought out by the shared
grouping of two alternating entries for a particular verb form, differing in respect of the specified
SCF and slot for the argument heads in the cluster Rooth et al. (1999).

In the current framework, reliance on a manmade sense inventory for verbs would not be
helpful, since this presupposes knowledge about the items for which we are acquiring information.
It makes more sense not to disambiguate the verbs in advance, but to use the Levin classification
to disambiguate the verbs as Dorr & Jones (1996) do. If alternations are detected collectively by
combining evidence to place the verbs within the Levin taxonomy, then the resulting classification
will signify the relevant senses of the verb, even if these were not stipulated in the input data.

One promising avenue for research into diathesis alternation detection is to use an automat-
ically constructed semantic hierarchy for characterising selectional preference models. An auto-
matically constructed hierarchy would be better placed to highlight semantic differences that are
apparent in the corpus data. Another advantage is that the method could then be applied to another
language, provided the corpus data was available and a shallow parser was available for that lan-
guage. However, sparse data would still be a problem with selectional preferences represented in
automatically constructed hierarchies. It may be even more problematic than when using manu-
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ally constructed hierarchies if more tokens of each type are required for classification (Schulte im
Walde, 1998).

We have successfully used our method with a threshold of 10 or more argument head instances
for each verb and SCF combination. It may be possible to lower this threshold further, particularly
in cases where the argument head data falls within the same area of the semantic taxonomy. Cer-
tainly, combining evidence from different diathesis alternations should help, provided that there is
at least some evidence to start off classification.
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